This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A032515 #15 Jun 25 2017 13:18:28 %S A032515 0,1,2,3,4,5,7,9,11,13,15,17,19,21,23,25,28,31,34,37,40,43,46,49,52, %T A032515 55,58,61,64,67,70,73,77,81,85,89,93,97,101,105,109,113,117,121,125, %U A032515 129,133,137,141,145,149,153,157,161,165,169,174,179,184,189,194,199 %N A032515 Sum of the integer part of 5/2-th roots of integers less than or equal to n. %F A032515 a(0) = 0, a(n) = a(n - 1) + floor(n^(2/5)). - _Alonso del Arte_, Jun 18 2017 %F A032515 a(n) = (5/7)*n^(7/5) + O(n). - _Charles R Greathouse IV_, Jun 25 2017 %e A032515 1^(2/5) = 1. %e A032515 2^(2/5) = 1.3195... %e A032515 3^(2/5) = 1.5518... %e A032515 4^(2/5) = 1.7411... %e A032515 5^(2/5) = 1.90365... %e A032515 6^(2/5) = 2.047672511... %e A032515 Hence a(1) = 1, a(2) = 2, a(3) = 3, a(4) = 4, a(5) = 5, a(6) = 7. %t A032515 Accumulate[Table[Floor[n^(2/5)], {n, 0, 59}]] (* _Alonso del Arte_, Jun 13 2017 *) %o A032515 (PARI) a(n)=sum(k=1,n, sqrtnint(k^2,5)) \\ _Charles R Greathouse IV_, Jun 25 2017 %K A032515 nonn,easy %O A032515 0,3 %A A032515 Michel Tixier (tixier(AT)dyadel.net)