cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032524 Arrange digits of primes in ascending order (omitting any that contain 0's), sort list, remove duplicates.

This page as a plain text file.
%I A032524 #15 Jul 19 2015 11:13:17
%S A032524 2,3,5,7,11,13,14,16,17,19,23,29,34,35,37,38,47,59,67,79,89,112,113,
%T A032524 115,118,119,124,125,127,128,133,134,136,137,139,145,146,149,157,166,
%U A032524 167,169,179,188,199,223,227,229,233,235,236,238,239,257,269,277,278,289,299,334,335,337,338,344,346
%N A032524 Arrange digits of primes in ascending order (omitting any that contain 0's), sort list, remove duplicates.
%H A032524 Michael De Vlieger, <a href="/A032524/b032524.txt">Table of n, a(n) for n = 1..10000</a>
%e A032524 From _Michael De Vlieger_, Jul 14 2015: (Start)
%e A032524 16 is a term because it is the result of sorting the digits of prime 61 in ascending order, and 61 contains no zeros.
%e A032524 49 is not a term since neither 49 nor 94 are prime, and the prime 409 contains a zero.
%e A032524 133 is a term because while 133 itself is composite, both 313 and 331 are prime and contain no zeros. (End)
%t A032524 Sort@ DeleteDuplicates[FromDigits@ Sort@ IntegerDigits@ # & /@ Select[Prime@ Range@ PrimePi[10^3], Last@ DigitCount@ # == 0 &]] (* _Michael De Vlieger_, Jul 14 2015 *)
%Y A032524 Cf. A007933, A034442.
%K A032524 nonn,base,easy
%O A032524 1,1
%A A032524 _N. J. A. Sloane_
%E A032524 More terms from _Erich Friedman_
%E A032524 Corrected and extended by _Michael De Vlieger_, Jul 14 2015