This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A032769 #42 Jan 02 2025 09:30:12 %S A032769 0,1,2,4,5,6,7,9,10,11,12,14,15,16,17,19,20,21,22,24,25,26,27,29,30, %T A032769 31,32,34,35,36,37,39,40,41,42,44,45,46,47,49,50,51,52,54,55,56,57,59, %U A032769 60,61,62,64,65,66,67,69,70,71,72,74,75,76,77,79,80,81,82,84,85 %N A032769 Numbers that are congruent to {0, 1, 2, 4} mod 5. %C A032769 Also, numbers m such that m*(m+1)*(m+2)*(m+3)*(m+4)/(m+(m+1)+(m+2)+(m+3)+(m+4)) is an integer. %H A032769 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1). %F A032769 a(n) = (1/8)*(10*n-11+(-1)^n+2*(-1)^floor(n/2)). - _Ralf Stephan_, Jun 09 2005 %F A032769 a(n) = floor((5*n-4)/4). - _Gary Detlefs_, Mar 06 2010 %F A032769 G.f.: x^2*(1+x+2*x^2+x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - _R. J. Mathar_, Oct 08 2011 %F A032769 From _Wesley Ivan Hurt_, May 30 2016: (Start) %F A032769 a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. %F A032769 a(n) = (10*n-11+i^(2*n)+(1+i)*I^(-n)+(1-i)*i^n)/8 where i=sqrt(-1). %F A032769 a(2k) = A047209(k), a(2k-1) = A047215(k). (End) %F A032769 E.g.f.: (4 + sin(x) + cos(x) + (5*x - 6)*sinh(x) + 5*(x - 1)*cosh(x))/4. - _Ilya Gutkovskiy_, May 31 2016 %F A032769 Sum_{n>=2} (-1)^n/a(n) = log(5)/4 + 3*sqrt(5)*log(phi)/10 - sqrt(1-2/sqrt(5))*Pi/10, where phi is the golden ratio (A001622). - _Amiram Eldar_, Dec 10 2021 %p A032769 seq(floor((5*n-4)/4), n=1..69); # _Gary Detlefs_, Mar 06 2010 %t A032769 Table[Floor[(5n - 4)/4], {n, 80}] (* _Wesley Ivan Hurt_, May 30 2016 *) %o A032769 (Magma) [Floor((5*n - 4)/4) : n in [1..80]]; // _Wesley Ivan Hurt_, May 30 2016 %o A032769 (PARI) a(n)=5*n\4-1 \\ _Charles R Greathouse IV_, Jan 02 2025 %Y A032769 Cf. A001622, A032768, A032770, A047209, A047215. %K A032769 nonn,easy %O A032769 1,3 %A A032769 _Patrick De Geest_, May 15 1998 %E A032769 Better description from _Michael Somos_, Jun 08 2000