This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A032775 #29 Dec 30 2023 23:44:53 %S A032775 0,1,2,3,5,6,7,8,9,10,12,13,14,15,16,17,19,20,21,22,23,24,26,27,28,29, %T A032775 30,31,33,34,35,36,37,38,40,41,42,43,44,45,47,48,49,50,51,52,54,55,56, %U A032775 57,58,59,61,62,63,64,65,66,68,69,70,71,72,73,75,76,77,78,79,80,82,83 %N A032775 Numbers that are congruent to {0, 1, 2, 3, 5, 6} mod 7. %C A032775 n(n+1)(n+2)...(n+6) / (n + (n+1) + (n+2) + ... + (n+6)) is an integer. %H A032775 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,1,-1). %F A032775 Natural numbers minus '4, 11, 18, 25, ...' (= previous term + 7). %F A032775 G.f.: x^2*(1+x+x^2+2*x^3+x^4+x^5) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2 ). - _R. J. Mathar_, Oct 08 2011 %F A032775 From _Wesley Ivan Hurt_, Jun 15 2016: (Start) %F A032775 a(n) = a(n-1) + a(n-6) - a(n-7) for n > 7. %F A032775 a(n) = (42*n - 45 - 3*cos(n*Pi) + 12*cos(n*Pi/3) - 4*sqrt(3)*sin(2*n*Pi/3))/36. %F A032775 a(6k) = 7k-1, a(6k-1) = 7k-2, a(6k-2) = 7k-4, a(6k-3) = 7k-5, a(6k-4) = 7k-6, a(6k-5) = 7k-7. (End) %p A032775 A032775:=n->(42*n-45-3*cos(n*Pi)+12*cos(n*Pi/3)-4*sqrt(3)*sin(2*n*Pi/3))/36: seq(A032775(n), n=1..100); # _Wesley Ivan Hurt_, Jun 15 2016 %t A032775 Select[Range[0, 100], MemberQ[{0, 1, 2, 3, 5, 6}, Mod[#, 7]] &] (* _Wesley Ivan Hurt_, Jun 15 2016 *) %t A032775 DeleteCases[Range[0,100],_?(Mod[#,7]==4&)] (* or *) LinearRecurrence[ {1,0,0,0,0,1,-1},{0,1,2,3,5,6,7},80] (* _Harvey P. Dale_, Sep 19 2020 *) %o A032775 (Magma) [ n: n in [0..90] | n mod 7 in {0, 1, 2, 3, 5, 6} ]; // _Vincenzo Librandi_, Dec 29 2010 %Y A032775 Cf. A032774, A032776. %K A032775 nonn,easy %O A032775 1,3 %A A032775 _Patrick De Geest_, May 15 1998