This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A032790 #15 Jan 25 2022 08:30:22 %S A032790 0,1,5,8,33,161,616,3333,8008,18881,54945,333333,33333333,120232021, %T A032790 124060421,161656161,185464581,541202145,677191776,3333333333, %U A032790 6316116136,333333333333,544721127445,616947749616,3333169613333,3333802083333,5412843482145,6352230322536 %N A032790 Palindromic quotients (k*(k+1)*(k+2)) / (k+(k+1)+(k+2)). %C A032790 For all i >= 1, 3^{2*i} is a term arising from k = 9^i, where ^ is repeated concatenation. - _Michael S. Branicky_, Jan 24 2022 %H A032790 Michael S. Branicky, <a href="/A032790/b032790.txt">Table of n, a(n) for n = 1..48</a> %t A032790 Select[Table[Times@@Range[n,n+2]/(3n+3),{n,0,317*10^4}],PalindromeQ] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, May 06 2019 *) %o A032790 (Python) %o A032790 from itertools import count, islice %o A032790 def ispal(n): s = str(n); return s == s[::-1] %o A032790 def agen(): %o A032790 for k in count(0): %o A032790 q, r = divmod(k*(k+2), 3) %o A032790 if r == 0 and ispal(q): %o A032790 yield k, q %o A032790 print([q for k, q in islice(agen(), 31)]) # _Michael S. Branicky_, Jan 24 2022 %Y A032790 Cf. A032789. %K A032790 nonn,base %O A032790 1,3 %A A032790 _Patrick De Geest_, May 15 1998 %E A032790 a(26) and beyond from _Michael S. Branicky_, Jan 24 2022