A032841 Numbers whose base-3 representation Sum_{i=0..m} d(i)*3^i has d(m) < d(m-1) > d(m-2) < ...
1, 2, 5, 15, 16, 46, 47, 50, 138, 141, 142, 150, 151, 415, 416, 424, 425, 428, 451, 452, 455, 1245, 1248, 1249, 1272, 1275, 1276, 1284, 1285, 1353, 1356, 1357, 1365, 1366, 3736, 3737, 3745, 3746, 3749, 3817, 3818, 3826, 3827
Offset: 1
Examples
The numbers {415, 416, 424, 425, 428, 451, 452, 455} are in the sequence because in base 3 they are {120101, 120102, 120201, 120202, 120212, 121201, 121202, 121212}; all the six-digit base-3 numbers that fit the pattern. - _Christian N. K. Anderson_, May 21 2024
Links
- Christian N. K. Anderson, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
R
updown.base<-function(base,ndig,curdig=1,diglist=rep(NA,ndig)) { if(curdig>ndig) return(sum(base^(ndig:1-1)*diglist)); nextstep<-function(i) {diglist[curdig]=i; updown.base(base,ndig,curdig+1,diglist)}; if(curdig==1) return(sort(unlist(sapply(1:(base-2+(ndig==1)), nextstep)))); if(curdig%%2) return(sapply((diglist[curdig-1]-1):0, nextstep)); sapply((diglist[curdig-1]+1):(base-1), nextstep) }; sapply(1:10,function(nd) updown.base(3,nd)) # Christian N. K. Anderson, May 21 2024
Comments