This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A032937 #26 Oct 29 2024 10:27:36 %S A032937 1,2,4,5,8,10,16,17,20,21,32,34,40,42,64,65,68,69,80,81,84,85,128,130, %T A032937 136,138,160,162,168,170,256,257,260,261,272,273,276,277,320,321,324, %U A032937 325,336,337,340,341,512,514,520,522,544,546 %N A032937 Numbers k whose base-2 representation Sum_{i=0..m} d(i)*2^(m-i) has d(i)=0 for all odd i, excluding 0. Here m is the position of the leading bit of k. %C A032937 Essentially the same as A126684. - _R. J. Mathar_, Jun 15 2008 %C A032937 A126684 is the primary entry for this sequence. - _Franklin T. Adams-Watters_, Aug 30 2014 %t A032937 Join[{1},Select[Range[0,600],Union[Take[IntegerDigits[#,2],{2,-1,2}]]=={0}&]] (* _Harvey P. Dale_, Sep 17 2023 *) %o A032937 (Python) %o A032937 from gmpy2 import digits %o A032937 def A032937(n): %o A032937 def bisection(f,kmin=0,kmax=1): %o A032937 while f(kmax) > kmax: kmax <<= 1 %o A032937 while kmax-kmin > 1: %o A032937 kmid = kmax+kmin>>1 %o A032937 if f(kmid) <= kmid: %o A032937 kmax = kmid %o A032937 else: %o A032937 kmin = kmid %o A032937 return kmax %o A032937 def g(x): %o A032937 s = digits(x,4) %o A032937 for i in range(l:=len(s)): %o A032937 if s[i]>'1': %o A032937 break %o A032937 else: %o A032937 return int(s,2) %o A032937 return int(s[:i]+'1'*(l-i),2) %o A032937 def f(x): return n+x-g(x)-g(x>>1) %o A032937 return bisection(f,n,n) # _Chai Wah Wu_, Oct 29 2024 %Y A032937 Cf. A033053, A126684. %K A032937 nonn,base %O A032937 1,2 %A A032937 _Clark Kimberling_