This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A033050 #42 Oct 31 2022 02:09:58 %S A033050 0,1,14,15,196,197,210,211,2744,2745,2758,2759,2940,2941,2954,2955, %T A033050 38416,38417,38430,38431,38612,38613,38626,38627,41160,41161,41174, %U A033050 41175,41356,41357,41370,41371,537824,537825,537838,537839,538020 %N A033050 Numbers whose set of base 14 digits is {0,1}. %C A033050 Sums of distinct powers of 14. %C A033050 The base-14 digits may comprise zero, one, or both. - _Harvey P. Dale_, May 12 2014 %H A033050 T. D. Noe, <a href="/A033050/b033050.txt">Table of n, a(n) for n = 0..1023</a> %H A033050 Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, <a href="https://arxiv.org/abs/2210.10968">Identities and periodic oscillations of divide-and-conquer recurrences splitting at half</a>, arXiv:2210.10968 [cs.DS], 2022, p. 45. %F A033050 a(n) = Sum_{i=0..m} d(i)*14^i, where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n. %F A033050 a(n) = A097260(n)/13. %F A033050 a(2n) = 14*a(n), a(2n+1) = a(2n)+1. %F A033050 a(n) = Sum_{k>=0} A030308(n,k)*14^k. - _Philippe Deléham_, Oct 20 2011 %F A033050 G.f.: (1/(1 - x))*Sum_{k>=0} 14^k*x^(2^k)/(1 + x^(2^k)). - _Ilya Gutkovskiy_, Jun 04 2017 %t A033050 Select[Range[0,540000],Max[IntegerDigits[#,14]]<2&] (* _Harvey P. Dale_, May 12 2014 *) %t A033050 FromDigits[#,14]&/@Tuples[{0,1},6] (* _Harvey P. Dale_, Jun 18 2021 *) %o A033050 (PARI) A033050(n,b=14)=subst(Pol(binary(n)),'x,b) \\ _M. F. Hasler_, Feb 01 2016 %Y A033050 Cf. A000695, A005836, A033042-A033052. %Y A033050 Row 13 of array A104257. %K A033050 nonn,base %O A033050 0,3 %A A033050 _Clark Kimberling_ %E A033050 Extended by _Ray Chandler_, Aug 03 2004