cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033053 Numbers whose base-2 representation Sum_{i=0..m} d(i)*2^i has d(i)=1 when i != m mod 2.

Original entry on oeis.org

1, 3, 6, 7, 13, 15, 26, 27, 30, 31, 53, 55, 61, 63, 106, 107, 110, 111, 122, 123, 126, 127, 213, 215, 221, 223, 245, 247, 253, 255, 426, 427, 430, 431, 442, 443, 446, 447, 490, 491, 494, 495, 506, 507, 510, 511, 853, 855, 861, 863
Offset: 1

Views

Author

Keywords

Comments

Numbers 2^(2k)-1 - A062880(m) where 2^(2k-2) >= A062880(m) or 2^(2k+1)-1 - A000695(m) where 2^(2k-1) >= A000695(m). - Franklin T. Adams-Watters, Aug 30 2014

Examples

			26 = 11010_2 has m=4, and d(i) = 1 for i=1 and 3.
53 = 110101_2 has m=5, and d(i) = 1 for i=0, 2 and 4.
		

Crossrefs

Disjoint with A032937 if more than 1 digit.

Programs

  • Maple
    F:= proc(m)
       local n0,j,S;
       n0:= 2^m + add(2^(m-1-2*j),j=0..floor((m-1)/2));
       S:= combinat[powerset]({seq(2^(m-2*j),j=1..floor(m/2))});
       map(t -> convert(t,`+`)+n0,S);
    end;
    `union`(seq(F(m),m=0..24)}; # Robert Israel, Mar 30 2014

Formula

a(2j+2) = 4 a(j)+3,
a(2j+1) = 4 a(j) + 2 if j <= 3*2^(m-1)-2,
a(2j+1) = 4 a(j) + 1 otherwise, where m = floor(log_2(j+1)).

Extensions

Definition corrected, incorrect cross-reference removed, and recurrence formulas by Robert Israel, Mar 30 2014