A033053 Numbers whose base-2 representation Sum_{i=0..m} d(i)*2^i has d(i)=1 when i != m mod 2.
1, 3, 6, 7, 13, 15, 26, 27, 30, 31, 53, 55, 61, 63, 106, 107, 110, 111, 122, 123, 126, 127, 213, 215, 221, 223, 245, 247, 253, 255, 426, 427, 430, 431, 442, 443, 446, 447, 490, 491, 494, 495, 506, 507, 510, 511, 853, 855, 861, 863
Offset: 1
Examples
26 = 11010_2 has m=4, and d(i) = 1 for i=1 and 3. 53 = 110101_2 has m=5, and d(i) = 1 for i=0, 2 and 4.
Links
- Robert Israel, Table of n, a(n) for n = 1..12286
Programs
-
Maple
F:= proc(m) local n0,j,S; n0:= 2^m + add(2^(m-1-2*j),j=0..floor((m-1)/2)); S:= combinat[powerset]({seq(2^(m-2*j),j=1..floor(m/2))}); map(t -> convert(t,`+`)+n0,S); end; `union`(seq(F(m),m=0..24)}; # Robert Israel, Mar 30 2014
Formula
a(2j+2) = 4 a(j)+3,
a(2j+1) = 4 a(j) + 2 if j <= 3*2^(m-1)-2,
a(2j+1) = 4 a(j) + 1 otherwise, where m = floor(log_2(j+1)).
Extensions
Definition corrected, incorrect cross-reference removed, and recurrence formulas by Robert Israel, Mar 30 2014
Comments