cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033054 Numbers whose base-3 representation Sum_{i=0..m} d(i)*3^i has d(i)=1 for m-i odd.

Original entry on oeis.org

1, 2, 4, 7, 12, 13, 14, 21, 22, 23, 37, 40, 43, 64, 67, 70, 111, 112, 113, 120, 121, 122, 129, 130, 131, 192, 193, 194, 201, 202, 203, 210, 211, 212, 334, 337, 340, 361, 364, 367, 388, 391, 394, 577, 580, 583, 604, 607, 610, 631
Offset: 1

Views

Author

Keywords

Crossrefs

Disjoint with A032953 if more than 1 digit.

Programs

  • Maple
    N:= 1000: # to get a(1) to a(N)
    K:= ceil((N-4)/3):
    Dmax:= ilog[3](ceil(K/2+1)):
    A:= Vector(3*K+4):
    A[1..4]:= <1,2,4,7>:
    for d from 0 to Dmax do
      for k from 2*3^d-1 to min(4*3^d-2,K) do
         A[3*k+2]:= 9*A[k]+3;
         A[3*k+3]:= 9*A[k]+4;
         A[3*k+4]:= 9*A[k]+5
      od:
      for k from 4*3^d-1 to min(2*3^(d+1)-2,K) do
         A[3*k+2]:= 9*A[k]+1;
         A[3*k+3]:= 9*A[k]+4;
         A[3*k+4]:= 9*A[k]+7
      od:
    od:
    seq(A[i],i=1..N); # Robert Israel, Jun 06 2016

Formula

From Robert Israel, Jun 06 2016: (Start)
a(3n+3) = 9a(n)+4.
If A110654(n) is in A132141 then a(3n+2) = 9a(n)+3 and a(3n+4) = 9a(n)+5
otherwise a(3n+2) = 9a(n)+1 and a(3n+4) = 9a(n)+7.
G.f. satisfies g(x) = 9(x^2+x^3+x^4)g(x^3) + (x+2x^2+4x^3+6x^4-x^5)/(1-x^3) + ((2+2x)/(x+x^2+x^3)) Sum_{k>=1}(x^(2*3^k)-x^(4*3^k)).
(End)

Extensions

Name corrected by Robert Israel, Jun 06 2016