cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033090 Indices of incrementally largest terms in the continued fraction for Pi.

This page as a plain text file.
%I A033090 #45 Feb 16 2025 08:32:36
%S A033090 1,2,3,5,308,432,28422,156382,267314,453294,11504931,849955263,
%T A033090 2349980289,3588031780,8600404591,15621034283
%N A033090 Indices of incrementally largest terms in the continued fraction for Pi.
%C A033090 This sequence assumes nonstandard indexing of continued fraction terms as [a_1; a_2, a_3, ...]. If you use the actual offset from A001203, corresponding to [a_0; a_1, a_2, ...], you get instead 0, 1, 2, 4, 307, 431, 28421, ... Compare with A033092 versus A224849. - _Jeppe Stig Nielsen_, Dec 14 2019
%H A033090 Syed Fahad, <a href="https://drive.google.com/drive/folders/1--Qh9Xxq1i6oeHnTXzKrQ9FoguHreBKy">30 billion terms of the simple continued fraction of Pi</a>
%H A033090 E. Fontich, C. Simó, and A. Vieiro, <a href="https://doi.org/10.1134/S1560354718060011">On the "hidden" harmonics associated to best approximants due to quasiperiodicity in splitting phenomena</a>, Regular and Chaotic Dynamics (2018), Pleiades Publishing, Vol. 23, Issue 6, 638-653. Also <a href="http://www.maia.ub.es/~carles/moser90.pdf">PDF</a>.
%H A033090 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Pi.html">Pi</a>
%H A033090 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PiContinuedFraction.html">Pi Continued Fraction</a>
%t A033090 With[{s = ContinuedFraction[Pi, 2*10^7]}, Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]] (* _Michael De Vlieger_, Jan 31 2020 *)
%Y A033090 Cf. A033089, A001203.
%K A033090 nonn,hard
%O A033090 1,2
%A A033090 _Eric W. Weisstein_, _Bill Gosper_
%E A033090 a(12) from _Eric W. Weisstein_, Dec 08 2010
%E A033090 a(13) from _Eric W. Weisstein_, Sep 16 2011
%E A033090 a(14) from _Eric W. Weisstein_, Sep 17 2011
%E A033090 a(15) from _Eric W. Weisstein_, Jul 18 2013
%E A033090 a(16) from _Syed Fahad_, Apr 27 2021