A033157 Begins with (1, 4); avoids 3-term arithmetic progressions.
1, 4, 5, 8, 10, 13, 14, 17, 28, 31, 32, 35, 37, 40, 41, 44, 82, 85, 86, 89, 91, 94, 95, 98, 109, 112, 113, 116, 118, 121, 122, 125, 244, 247, 248, 251, 253, 256, 257, 260, 271, 274, 275, 278, 280, 283, 284, 287, 325, 328, 329, 332, 334, 337, 338, 341, 352, 355, 356, 359, 361
Offset: 1
References
- F. Iacobescu, 'Smarandache Partition Type and Other Sequences.' Bull. Pure Appl. Sci. 16E, 237-240, 1997.
- H. Ibstedt, A Few Smarandache Sequences, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, 170-183.
Links
- Eric Weisstein's World of Mathematics, Nonarithmetic Progression Sequence
- Index entries related to non-averaging sequences
Programs
-
PARI
Da(n)=if(n<1,1,if(n%2==0,3*Da(n/2)+5-13*((n/2)%2)-6*((n/2)%4==2),3)) /* Ralf Stephan */
Formula
Partial sums of Da(n), where Da(n) is defined in the PARI program.
a(n) = A004793(n) + [n is even] + [ceiling(n/2) is even]. Proof by Lawrence Sze. - Ralf Stephan, Nov 15 2004
Comments