cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033157 Begins with (1, 4); avoids 3-term arithmetic progressions.

Original entry on oeis.org

1, 4, 5, 8, 10, 13, 14, 17, 28, 31, 32, 35, 37, 40, 41, 44, 82, 85, 86, 89, 91, 94, 95, 98, 109, 112, 113, 116, 118, 121, 122, 125, 244, 247, 248, 251, 253, 256, 257, 260, 271, 274, 275, 278, 280, 283, 284, 287, 325, 328, 329, 332, 334, 337, 338, 341, 352, 355, 356, 359, 361
Offset: 1

Views

Author

Keywords

Comments

Also called Stanley Sequence S[1,4]. - Ralf Stephan, Jan 31 2014

References

  • F. Iacobescu, 'Smarandache Partition Type and Other Sequences.' Bull. Pure Appl. Sci. 16E, 237-240, 1997.
  • H. Ibstedt, A Few Smarandache Sequences, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, 170-183.

Crossrefs

Cf. A092482, A004793. Row 2 of array in A093682.

Programs

  • PARI
    Da(n)=if(n<1,1,if(n%2==0,3*Da(n/2)+5-13*((n/2)%2)-6*((n/2)%4==2),3)) /* Ralf Stephan */

Formula

Partial sums of Da(n), where Da(n) is defined in the PARI program.
a(n) = A004793(n) + [n is even] + [ceiling(n/2) is even]. Proof by Lawrence Sze. - Ralf Stephan, Nov 15 2004
a(n) = A033161(n) - 1 = A185256(n) + 1. - Ralf Stephan, Jan 31 2014