cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033158 Begins with (1, 5); avoids 3-term arithmetic progressions.

Original entry on oeis.org

1, 5, 6, 8, 12, 13, 17, 24, 27, 32, 34, 38, 39, 45, 50, 57, 74, 79, 81, 86, 96, 100, 107, 125, 129, 132, 137, 144, 170, 189, 198, 204, 221, 222, 227, 228, 239, 248, 260, 270, 277, 285, 288, 303, 309, 311, 314, 320, 338, 386, 393, 398, 423, 435, 456, 467, 471, 492, 494, 500
Offset: 1

Views

Author

Keywords

References

  • Iacobescu, F. 'Smarandache Partition Type and Other Sequences.' Bull. Pure Appl. Sci. 16E, 237-240, 1997.
  • H. Ibstedt, A Few Smarandache Sequences, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, 170-183.

Crossrefs

Equals A005487(n-1)+1.

Programs

  • Mathematica
    ss[s1_, M_] := Module[{n, chvec, swi, p, s2, i, j, t1, mmm}, t1 = Length[s1]; mmm = 1000; s2 = Table[s1, {t1 + M}] // Flatten; chvec = Array[0 &, mmm]; For[i = 1, i <= t1, i++, chvec[[s2[[i]]]] = 1]; (* get n-th term *) For[n = t1 + 1, n <= t1 + M, n++, (* try i as next term *) For[i = s2[[n - 1]] + 1, i <= mmm, i++, swi = -1; (* test against j-th term *) For[j = 1, j <= n - 2, j++, p = s2[[n - j]]; If[2*p - i < 0, Break[]]; If[chvec[[2*p - i]] == 1, swi = 1; Break[]]]; If[swi == -1, s2[[n]] = i; chvec[[i]] = 1; Break[]]]; If[swi == 1, Print["Error, no solution at n = ", n]]]; Table[s2[[i]], {i, 1, t1 + M}]]; A033158 = ss[{0, 4}, 80] + 1 (* Jean-François Alcover, Oct 08 2013, after Maple program in A185256 *)