A033158 Begins with (1, 5); avoids 3-term arithmetic progressions.
1, 5, 6, 8, 12, 13, 17, 24, 27, 32, 34, 38, 39, 45, 50, 57, 74, 79, 81, 86, 96, 100, 107, 125, 129, 132, 137, 144, 170, 189, 198, 204, 221, 222, 227, 228, 239, 248, 260, 270, 277, 285, 288, 303, 309, 311, 314, 320, 338, 386, 393, 398, 423, 435, 456, 467, 471, 492, 494, 500
Offset: 1
Keywords
References
- Iacobescu, F. 'Smarandache Partition Type and Other Sequences.' Bull. Pure Appl. Sci. 16E, 237-240, 1997.
- H. Ibstedt, A Few Smarandache Sequences, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, 170-183.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..2000
- Eric Weisstein's World of Mathematics, Nonarithmetic Progression Sequence
Crossrefs
Equals A005487(n-1)+1.
Programs
-
Mathematica
ss[s1_, M_] := Module[{n, chvec, swi, p, s2, i, j, t1, mmm}, t1 = Length[s1]; mmm = 1000; s2 = Table[s1, {t1 + M}] // Flatten; chvec = Array[0 &, mmm]; For[i = 1, i <= t1, i++, chvec[[s2[[i]]]] = 1]; (* get n-th term *) For[n = t1 + 1, n <= t1 + M, n++, (* try i as next term *) For[i = s2[[n - 1]] + 1, i <= mmm, i++, swi = -1; (* test against j-th term *) For[j = 1, j <= n - 2, j++, p = s2[[n - j]]; If[2*p - i < 0, Break[]]; If[chvec[[2*p - i]] == 1, swi = 1; Break[]]]; If[swi == -1, s2[[n]] = i; chvec[[i]] = 1; Break[]]]; If[swi == 1, Print["Error, no solution at n = ", n]]]; Table[s2[[i]], {i, 1, t1 + M}]]; A033158 = ss[{0, 4}, 80] + 1 (* Jean-François Alcover, Oct 08 2013, after Maple program in A185256 *)