This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A033183 #18 Feb 22 2017 20:40:39 %S A033183 1,0,0,0,1,0,0,0,1,1,0,0,1,1,0,0,1,1,1,0,1,1,1,0,1,1,1,1,1,1,1,1,1,1, %T A033183 1,1,2,1,1,1,2,1,1,1,2,2,1,1,2,2,1,1,2,2,2,1,2,2,2,1,2,2,2,2,2,2,2,2, %U A033183 2,2,2,2,3,2,2,2,3,2,2,2,3,3,2,2,3,3,2 %N A033183 a(n) = number of pairs (p,q) such that 4*p + 9*q = n. %C A033183 From _Reinhard Zumkeller_, Nov 07 2009: (Start) %C A033183 In other words: number of partitions into 4 or 9; %C A033183 a(n) <= A078134(n); a(A078135(n)) = 0; %C A033183 a(A167632(n)) = n and a(m) < n for m < A167632(n). (End) %H A033183 Reinhard Zumkeller, <a href="/A033183/b033183.txt">Table of n, a(n) for n = 0..10000</a> %H A033183 <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, -1). %F A033183 a(n) = [ 7 n/9 ]+1+[ -3 n/4 ]. %F A033183 G.f.: 1/((1-x^4)*(1-x^9)). - _Vladeta Jovovic_, Nov 12 2004 %F A033183 a(n) = a(n-4) + a(n-9) - a(n-13). - _R. J. Mathar_, Dec 04 2011 %t A033183 CoefficientList[Series[1/((1-x^4)(1-x^9)),{x,0,80}],x] (* or *) LinearRecurrence[{0,0,0,1,0,0,0,0,1,0,0,0,-1}, {1,0,0,0,1,0,0,0,1,1,0,0,1}, 80] (* _Harvey P. Dale_, Oct 13 2012 *) %Y A033183 Cf. A033182. %K A033183 nonn %O A033183 0,37 %A A033183 Michel Tixier (tixier(AT)dyadel.net)