A033198 Discriminants of real quadratic number fields.
8, 12, 5, 24, 28, 40, 44, 13, 56, 60, 17, 76, 21, 88, 92, 104, 29, 120, 124, 33, 136, 140, 37, 152, 156, 41, 168, 172, 184, 188, 204, 53, 220, 57, 232, 236, 61, 248, 65, 264, 268, 69, 280, 284, 73, 296, 77, 312, 316, 328, 332, 85, 344, 348, 89, 364, 93, 376, 380, 97
Offset: 1
References
- David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, p. 103.
Crossrefs
Cf. A144338.
Programs
-
Maple
with(numtheory): a:= proc(n) if issqrfree(n) then RETURN(piecewise(n mod 4=1,n,4*n)) else RETURN(NULL) fi: end: seq(a(n),n=2..150); # C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 03 2005
-
Mathematica
Reap[For[n = 2, n <= 100, n++, If[SquareFreeQ[n], Sow[If[Mod[n, 4] == 1, n, 4 n]]]]][[2, 1]] (* Jean-François Alcover, Mar 22 2023 *)
Formula
For squarefree n >= 2, list n if n=1 mod 4 else 4n.
Extensions
More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 03 2005