This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A033202 #33 Jul 08 2025 19:43:43 %S A033202 97,109,157,193,349,373,397,421,541,577,661,733,769,853,877,937,997, %T A033202 1033,1093,1117,1213,1237,1249,1321,1489,1597,1609,1621,1657,1693, %U A033202 1741,1777,1861,1993,2017,2029,2053,2113,2221,2281,2341,2389,2437,2521,2593,2713,2797,2857,2953 %N A033202 Primes of form x^2+93*y^2. %D A033202 David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989. %H A033202 Vincenzo Librandi and Ray Chandler, <a href="/A033202/b033202.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A033202 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %F A033202 The primes are congruent to {1, 25, 49, 97, 109, 121, 133, 157, 169, 193, 205, 253, 289, 349, 361} (mod 372). - _T. D. Noe_, Apr 29 2008 %t A033202 QuadPrimes2[1, 0, 93, 10000] (* see A106856 *) %t A033202 Select[Prime@Range[500], MemberQ[{1, 25, 49, 97, 109, 121, 133, 157, 169, 193, 205, 253, 289, 349, 361}, Mod[#, 372]] &] (* _Vincenzo Librandi_, Jul 02 2016 *) %o A033202 (Magma) [p: p in PrimesUpTo(3000) | p mod 372 in {1,25,49,97, 109,121,133,157,169,193,205,253,289,349,361}]; // _Vincenzo Librandi_, Jul 02 2016 %o A033202 (Magma) [p: p in PrimesUpTo(3000) | NormEquation(93,p) eq true]; // _Bruno Berselli_, Jul 03 2016 %Y A033202 Cf. A139643. %K A033202 nonn,easy %O A033202 1,1 %A A033202 _N. J. A. Sloane_