cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033279 Number of diagonal dissections of an n-gon into 7 regions.

This page as a plain text file.
%I A033279 #17 Jul 08 2025 19:50:18
%S A033279 0,429,5005,32032,148512,556920,1790712,5116320,13302432,32008977,
%T A033279 72177105,153977824,313112800,610569960,1147334760,2086063200,
%U A033279 3682355040,6329047725,10617908301,17424259776,28021470400,44233892560,68638798800,104830165440,157759842240
%N A033279 Number of diagonal dissections of an n-gon into 7 regions.
%C A033279 Number of standard tableaux of shape (n-7,2,2,2,2,2,2) (n>=9). - _Emeric Deutsch_, May 21 2004
%C A033279 Number of short bushes with n+5 edges and 7 branch nodes (i.e. nodes with outdegree at least 2; a short bush is an ordered tree with no nodes of outdegree 1). Example: a(9)=429 because the only short bushes with 14 edges and 7 branch nodes are the four-hundred-twenty-nine full binary trees with 14 edges. Column 7 of A108263. - _Emeric Deutsch_, May 29 2005
%H A033279 T. D. Noe, <a href="/A033279/b033279.txt">Table of n, a(n) for n = 8..1000</a>
%H A033279 D. Beckwith, <a href="http://www.jstor.org/stable/2589081">Legendre polynomials and polygon dissections?</a>, Amer. Math. Monthly, 105 (1998), 256-257.
%H A033279 F. R. Bernhart, <a href="http://dx.doi.org/10.1016/S0012-365X(99)00054-0">Catalan, Motzkin and Riordan numbers</a>, Discr. Math., 204 (1999), 73-112.
%F A033279 a(n) = binomial(n+5, 6)*binomial(n-3, 6)/7.
%F A033279 G.f.: z^9(429-572z+429z^2-208z^3+65z^4-12z^5+z^6)/(1-z)^13. - _Emeric Deutsch_, May 29 2005
%t A033279 Table[(Binomial[n+5,6]Binomial[n-3,6])/7,{n,8,40}] (* _Harvey P. Dale_, May 27 2013 *)
%o A033279 (PARI) vector(40, n, n+=7; binomial(n+5, 6)*binomial(n-3, 6)/7) \\ _Michel Marcus_, Jun 18 2015
%Y A033279 Cf. A108263.
%K A033279 nonn
%O A033279 8,2
%A A033279 _N. J. A. Sloane_