cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033281 Number of diagonal dissections of a convex (n+9)-gon into n+1 regions.

This page as a plain text file.
%I A033281 #19 Jul 08 2025 19:50:25
%S A033281 1,35,616,7644,76440,659736,5116320,36581688,245402157,1563837275,
%T A033281 9553624080,56338955400,322432175520,1798432526880,9809631964800,
%U A033281 52470868368240,275857874141850,1428186531145374
%N A033281 Number of diagonal dissections of a convex (n+9)-gon into n+1 regions.
%C A033281 Number of standard tableaux of shape (n+1,n+1,1,1,1,1,1,1) (see Stanley reference). - _Emeric Deutsch_, May 20 2004
%C A033281 Number of increasing tableaux of shape (n+7,n+7) with largest entry 2n+8. An increasing tableau is a semistandard tableau with strictly increasing rows and columns, and set of entries an initial segment of the positive integers. - _Oliver Pechenik_, May 02 2014
%C A033281 a(n) = number of noncrossing partitions of 2n+8 into n+1 blocks all of size at least 2.  - _Oliver Pechenik_, May 02 2014
%H A033281 D. Beckwith, <a href="http://www.jstor.org/stable/2589081">Legendre polynomials and polygon dissections?</a>, Amer. Math. Monthly, 105 (1998), 256-257.
%H A033281 O. Pechenik, <a href="http://arxiv.org/abs/1209.1355">Cyclic sieving of increasing tableaux and small Schröder paths</a>, arXiv:1209.1355 [math.CO].
%H A033281 O. Pechenik, <a href="http://dx.doi.org/10.1016/j.jcta.2014.04.002">Cyclic sieving of increasing tableaux and small Schröder paths</a>, J. Combin. Theory A, 125 (2014), 357-378.
%H A033281 R. P. Stanley, <a href="http://dx.doi.org/10.1006/jcta.1996.0099">Polygon dissections and standard Young tableaux</a>, J. Comb. Theory, Ser. A, 76, 175-177, 1996.
%F A033281 a(n)=binomial(n+6, 6)*binomial(2n+8, n)/(n+1).
%K A033281 nonn
%O A033281 0,2
%A A033281 _N. J. A. Sloane_