cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A325847 Lesser of exponentially-odd amicable numbers pair: numbers m < k such that m = s(k) and k = s(m), where s(k) is the sum of proper exponential-odd divisors of k.

Original entry on oeis.org

366, 3864, 16104, 16536, 59808, 71904, 142290, 142310, 196248, 198990, 240312, 326424, 341088, 348840, 366792, 520608, 664608, 704352, 753312, 912072, 1077890, 1156870, 1184490, 1511930, 1669910, 1805490, 1863456, 1936776, 2195640, 2236570, 2517480, 2686440
Offset: 1

Views

Author

Amiram Eldar, Sep 07 2019

Keywords

Comments

The sum of proper exponential-odd divisors of k is A033634(k) - k if k is exponentially odd (A268335), or A033634(k) if not.
The larger counterparts are in A325848.

Crossrefs

Programs

  • Mathematica
    f[e_] := If[OddQ[e], e + 2, e + 1]; fun[p_, e_] := 1 + (p^f[e] - p)/(p^2 - 1); a[1] = 1; a[n_] := Times @@ (fun @@@ (fct = FactorInteger[n])) - If[AllTrue[fct[[;; , 2]], OddQ], n, 0]; s = {}; Do[m = a[n]; If[m > n && a[m] == n, AppendTo[s, n]], {n, 1, 10^5}]; s

A325848 Larger of exponentially-odd amicable numbers pair: numbers m < k such that m = s(k) and k = s(m), where s(k) is the sum of proper exponential-odd divisors of k.

Original entry on oeis.org

378, 4584, 16632, 16728, 64032, 76704, 179118, 168730, 225096, 256338, 266568, 391656, 401952, 387720, 393528, 593952, 788448, 781728, 897888, 1052088, 1099390, 1292570, 1346598, 1598470, 2062570, 1863918, 2099424, 1940856, 2223720, 2429030, 2980056, 3336984
Offset: 1

Views

Author

Amiram Eldar, Sep 07 2019

Keywords

Comments

The terms are ordered according to their lesser counterparts (A325847).

Crossrefs

Programs

  • Mathematica
    f[e_] := If[OddQ[e], e + 2, e + 1]; fun[p_, e_] := 1 + (p^f[e] - p)/(p^2 - 1); a[1] = 1; a[n_] := Times @@ (fun @@@ (fct = FactorInteger[n])) - If[AllTrue[fct[[;; , 2]], OddQ], n, 0]; s = {}; Do[m = a[n]; If[m > n && a[m] == n, AppendTo[s, m]], {n, 1, 10^5}]; s
Showing 1-2 of 2 results.