cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033290 Ten consecutive primes in arithmetic progression.

This page as a plain text file.
%I A033290 #41 Feb 16 2025 08:32:36
%S A033290 100996972469714247637786655587969840329509324689190041803603417758904341703348882159067229719,
%T A033290 100996972469714247637786655587969840329509324689190041803603417758904341703348882159067229929,
%U A033290 100996972469714247637786655587969840329509324689190041803603417758904341703348882159067230139
%N A033290 Ten consecutive primes in arithmetic progression.
%C A033290 This was the first known case, found in 1998. The full 10 terms are linked below. - _Jens Kruse Andersen_, Jun 30 2014
%H A033290 Jens Kruse Andersen, <a href="/A033290/b033290.txt">Table of n, a(n) for n = 0..9</a>
%H A033290 J. K. Andersen, <a href="http://primerecords.dk/cpap.htm#k10">The largest known CPAP-10</a>
%H A033290 H. Dubner et al., <a href="http://dx.doi.org/10.1090/S0025-5718-01-01374-6">Ten consecutive primes in arithmetic progression</a>
%H A033290 T. Forbes, <a href="https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;af1ff20b.9803">Ten consecutive primes in arithmetic progression</a>
%H A033290 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/NonRecursions.html">Non Recursions</a>
%H A033290 Manfred Toplic, <a href="http://www.manfred-toplic.com/cp09.html">Nine and ten primes project</a>
%H A033290 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeArithmeticProgression.html">Primes in Arithmetic Progression</a>
%H A033290 <a href="/index/Pri#primes_AP">Index entries for sequences related to primes in arithmetic progressions</a>
%F A033290 N*m + x + 210*b, b = 0..9.
%F A033290 a(n) = a(0)+210*n, and a(n+1) = nextprime(a(n)+1). - _Jens Kruse Andersen_, Jun 30 2014
%Y A033290 Cf. A033188, A204189, A260751, A261140, A327760, A363980, A374949.
%K A033290 fini,full,nonn
%O A033290 0,1
%A A033290 _Manfred Toplic_