cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033296 Number of paths from (0,0) to (3n,0) that stay in first quadrant (but may touch horizontal axis), where each step is (2,1),(1,2) or (1,-1) and start with (1,2).

This page as a plain text file.
%I A033296 #22 May 29 2023 11:32:48
%S A033296 1,1,6,42,326,2706,23526,211546,1951494,18366882,175674054,1702686090,
%T A033296 16686795846,165079509042,1646340228006,16534463822010,
%U A033296 167081444125702,1697551974416706,17330661859937670,177699201786231530
%N A033296 Number of paths from (0,0) to (3n,0) that stay in first quadrant (but may touch horizontal axis), where each step is (2,1),(1,2) or (1,-1) and start with (1,2).
%F A033296 G.f.: A(x) = 1 + x*D(x)^3, where D(x) is the g.f. of A027307. Also: difference of A027307 and A032349. [Changed formula to include a(0) = 1. - _Paul D. Hanna_, May 28 2023]
%F A033296 D-finite with recurrence +n*(2*n+1)*a(n) +(-32*n^2+47*n-17)*a(n-1) +2*(55*n^2-223*n+228)*a(n-2) +3*(-4*n^2+33*n-70)*a(n-3) -(2*n-7)*(n-5)*a(n-4)=0. - _R. J. Mathar_, Jul 24 2022
%F A033296 From _Paul D. Hanna_, May 28 2023: (Start)
%F A033296 G.f. A(x) = (1/x) * Series_Reversion( x / C(x*C(x)^3) ), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
%F A033296 G.f. A(x) = B(x*A(x)) where B(x) = A(x/B(x)) = C(x*C(x)^3) is the g.f. of A363308, and C(x) is the g.f. of the Catalan numbers (A000108). (End)
%e A033296 G.f. A(x) = 1 + x + 6*x^2 + 42*x^3 + 326*x^4 + 2706*x^5 + 23526*x^6 + 211546*x^7 + 1951494*x^8 + 18366882*x^9 + 175674054*x^10 + ...
%o A033296 (PARI) /* G.f. A(x) = (1/x)*Series_Reversion( x/C(x*C(x)^3) ) */
%o A033296 {a(n) = my(C = (1 - sqrt(1 - 4*x +x^2*O(x^n)))/(2*x)); polcoeff( (1/x)*serreverse(x/subst(C,x,x*C^3)), n)}
%o A033296 for(n=0,20,print1(a(n),", ")) \\ _Paul D. Hanna_, May 28 2023
%Y A033296 Cf. A027307, A032349, A363308.
%K A033296 nonn
%O A033296 0,3
%A A033296 _Emeric Deutsch_