This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A033296 #22 May 29 2023 11:32:48 %S A033296 1,1,6,42,326,2706,23526,211546,1951494,18366882,175674054,1702686090, %T A033296 16686795846,165079509042,1646340228006,16534463822010, %U A033296 167081444125702,1697551974416706,17330661859937670,177699201786231530 %N A033296 Number of paths from (0,0) to (3n,0) that stay in first quadrant (but may touch horizontal axis), where each step is (2,1),(1,2) or (1,-1) and start with (1,2). %F A033296 G.f.: A(x) = 1 + x*D(x)^3, where D(x) is the g.f. of A027307. Also: difference of A027307 and A032349. [Changed formula to include a(0) = 1. - _Paul D. Hanna_, May 28 2023] %F A033296 D-finite with recurrence +n*(2*n+1)*a(n) +(-32*n^2+47*n-17)*a(n-1) +2*(55*n^2-223*n+228)*a(n-2) +3*(-4*n^2+33*n-70)*a(n-3) -(2*n-7)*(n-5)*a(n-4)=0. - _R. J. Mathar_, Jul 24 2022 %F A033296 From _Paul D. Hanna_, May 28 2023: (Start) %F A033296 G.f. A(x) = (1/x) * Series_Reversion( x / C(x*C(x)^3) ), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108). %F A033296 G.f. A(x) = B(x*A(x)) where B(x) = A(x/B(x)) = C(x*C(x)^3) is the g.f. of A363308, and C(x) is the g.f. of the Catalan numbers (A000108). (End) %e A033296 G.f. A(x) = 1 + x + 6*x^2 + 42*x^3 + 326*x^4 + 2706*x^5 + 23526*x^6 + 211546*x^7 + 1951494*x^8 + 18366882*x^9 + 175674054*x^10 + ... %o A033296 (PARI) /* G.f. A(x) = (1/x)*Series_Reversion( x/C(x*C(x)^3) ) */ %o A033296 {a(n) = my(C = (1 - sqrt(1 - 4*x +x^2*O(x^n)))/(2*x)); polcoeff( (1/x)*serreverse(x/subst(C,x,x*C^3)), n)} %o A033296 for(n=0,20,print1(a(n),", ")) \\ _Paul D. Hanna_, May 28 2023 %Y A033296 Cf. A027307, A032349, A363308. %K A033296 nonn %O A033296 0,3 %A A033296 _Emeric Deutsch_