This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A033306 #28 Jul 08 2025 19:51:05 %S A033306 1,1,1,2,2,2,5,6,6,5,15,20,24,20,15,52,75,100,100,75,52,203,312,450, %T A033306 500,450,312,203,877,1421,2184,2625,2625,2184,1421,877,4140,7016, %U A033306 11368,14560,15750,14560,11368,7016,4140,21147,37260,63144,85260,98280,98280,85260,63144,37260,21147 %N A033306 Triangle of coefficients of ordered cycle-index polynomials: T(n,k) = binomial(n,k)*Bell(k)*Bell(n-k). %D A033306 J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 80. %F A033306 E.g.f.: exp(exp(x*y)+exp(x)-2). %F A033306 Sum_{k=0..2n} (-1)^k * T(2n,k) = A000807(n). - _Alois P. Heinz_, Feb 13 2024 %e A033306 1; %e A033306 1, 1; %e A033306 2, 2, 2; %e A033306 5, 6, 6, 5; %e A033306 15, 20, 24, 20, 15; %e A033306 52, 75, 100, 100, 75, 52; %e A033306 ... %p A033306 A033306 := proc(n,k) %p A033306 if k < 0 or k > n then %p A033306 0; %p A033306 else %p A033306 binomial(n,k)*combinat[bell](k)*combinat[bell](n-k) ; %p A033306 end if; %p A033306 end proc: # _R. J. Mathar_, Mar 21 2013 %p A033306 # second Maple program: %p A033306 b:= proc(n) option remember; expand(`if`(n>0, add( %p A033306 (x^j+1)*b(n-j)*binomial(n-1, j-1), j=1..n), 1)) %p A033306 end: %p A033306 T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)): %p A033306 seq(T(n), n=0..10); # _Alois P. Heinz_, Aug 30 2019 %t A033306 t[n_, k_] := Binomial[n, k] * BellB[k] * BellB[n-k]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jan 14 2014 *) %Y A033306 Cf. A000110, row sums give A001861. %Y A033306 Columns include A000110 and A052889. %Y A033306 Cf. A000807. %K A033306 nonn,tabl,easy %O A033306 0,4 %A A033306 _N. J. A. Sloane_ %E A033306 Edited by _Vladeta Jovovic_, Sep 17 2003