cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033307 Decimal expansion of Champernowne constant (or Mahler's number), formed by concatenating the positive integers.

This page as a plain text file.
%I A033307 #162 May 27 2025 14:25:29
%S A033307 1,2,3,4,5,6,7,8,9,1,0,1,1,1,2,1,3,1,4,1,5,1,6,1,7,1,8,1,9,2,0,2,1,2,
%T A033307 2,2,3,2,4,2,5,2,6,2,7,2,8,2,9,3,0,3,1,3,2,3,3,3,4,3,5,3,6,3,7,3,8,3,
%U A033307 9,4,0,4,1,4,2,4,3,4,4,4,5,4,6,4,7,4,8,4,9,5,0,5,1,5,2,5,3,5,4,5,5,5,6,5
%N A033307 Decimal expansion of Champernowne constant (or Mahler's number), formed by concatenating the positive integers.
%C A033307 This number is known to be normal in base 10.
%C A033307 Named after David Gawen Champernowne (July 9, 1912 - August 19, 2000). - _Robert G. Wilson v_, Jun 29 2014
%D A033307 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.9, p. 442.
%D A033307 G. Harman, One hundred years of normal numbers, in M. A. Bennett et al., eds., Number Theory for the Millennium, II (Urbana, IL, 2000), 149-166, A K Peters, Natick, MA, 2002.
%D A033307 C. A. Pickover, The Math Book, Sterling, NY, 2009; see p. 364.
%D A033307 H. M. Stark, An Introduction to Number Theory. Markham, Chicago, 1970, p. 172.
%H A033307 Harry J. Smith, <a href="/A033307/b033307.txt">Table of n, a(n) for n = 0..20000</a>
%H A033307 D. H. Bailey and R. E. Crandall, <a href="http://www.emis.de/journals/EM/expmath/volumes/11/11.4/pp527_546.pdf">Random Generators and Normal Numbers</a>, Exper. Math. 11, 527-546, 2002.
%H A033307 Maya Bar-Hillel and Willem A. Wagenaar, <a href="https://doi.org/10.1016/0196-8858(91)90029-I">The perception of randomness</a>, Advances in applied mathematics 12.4 (1991): 428-454. See page 428.
%H A033307 Edward B. Burger, <a href="https://web.archive.org/web/20240529063505/http://www.maa.org/sites/default/files/pdf/upload_library/22/Chauvenet/Burger.pdf">Diophantine Olympics and World Champions: Polynomials and Primes Down Under</a>, Amer. Math. Monthly, 107 (Nov. 2000), 822-829.
%H A033307 Chess Programming Wiki, <a href="https://www.chessprogramming.org/David_Champernowne">David Champernowne</a> (as of Dec. 2019).
%H A033307 D. G. Champernowne, <a href="https://doi.org/10.1112/jlms/s1-8.4.254">The Construction of Decimals Normal in the Scale of Ten</a>, J. London Math. Soc., 8 (1933), 254-260.
%H A033307 Arthur H. Copeland and Paul Erdős, <a href="http://dx.doi.org/10.1090/S0002-9904-1946-08657-7">Note on Normal Numbers</a>, Bull. Amer. Math. Soc. 52, 857-860, 1946.
%H A033307 Peyman Nasehpour, <a href="https://arxiv.org/abs/1806.07560">A Simple Criterion for Irrationality of Some Real Numbers</a>, arXiv:1806.07560 [math.AC], 2018.
%H A033307 Simon Plouffe, <a href="http://www.worldwideschool.org/library/books/sci/math/MiscellaneousMathematicalConstants/chap12.html">Champernowne constant, the natural integers concatenated</a>.
%H A033307 Simon Plouffe, <a href="http://www.plouffe.fr/simon/constants/champernowne.txt">Champernowne constant, the natural integers concatenated</a>.
%H A033307 Simon Plouffe, <a href="http://www.plouffe.fr/simon/gendev/123456.html">Generalized expansion of real constants</a>.
%H A033307 Paul Pollack and Joseph Vandehey, <a href="http://arxiv.org/abs/1405.6266">Besicovitch, Bisection, and the normality of 0.(1)(4)(9)(16)(25)...</a>, arXiv:1405.6266 [math.NT], 2014.
%H A033307 Paul Pollack and Joseph Vandehey, <a href="http://www.jstor.org/stable/10.4169/amer.math.monthly.122.8.757">Besicovitch, Bisection, and the Normality of 0.(1)(4)(9)(16)(25)...</a>, The American Mathematical Monthly 122.8 (2015): 757-765.
%H A033307 John K. Sikora, <a href="http://arxiv.org/abs/1210.1263">On the High Water Mark Convergents of Champernowne's Constant in Base Ten</a>, arXiv:1210.1263 [math.NT], 2012.
%H A033307 John K. Sikora, <a href="http://arxiv.org/abs/1408.0261">Analysis of the High Water Mark Convergents of Champernowne's Constant in Various Bases</a>, arXiv:1408.0261 [math.NT], 2014.
%H A033307 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ChampernowneConstant.html">Champernowne constant</a>.
%H A033307 Wikipedia, <a href="https://en.wikipedia.org/wiki/Champernowne_constant">Champernowne constant</a>.
%H A033307 Hector Zenil, N. Kiani and J. Tegner, <a href="https://arxiv.org/abs/1608.05972">Low Algorithmic Complexity Entropy-deceiving Graphs</a>, arXiv preprint arXiv:1608.05972 [cs.IT], 2016.
%H A033307 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%F A033307 Let "index" i = ceiling( W(log(10)/10^(1/9) (n - 1/9))/log(10) + 1/9 ) where W denotes the principal branch of the Lambert W function. Then a(n) = (10^((n + (10^i - 10)/9) mod i - i + 1) * ceiling((9n + 10^i - 1)/(9i) - 1)) mod 10. See also Mathematica code. - David W. Cantrell, Feb 18 2007
%e A033307 0.12345678910111213141516171819202122232425262728293031323334353637383940414243...
%t A033307 Flatten[IntegerDigits/@Range[0, 57]] (* Or *)
%t A033307 almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Array[ almostNatural[#, 10] &, 105] (* _Robert G. Wilson v_, Jul 23 2012 and modified Jul 04 2014 *)
%t A033307 intermediate[n_] := Ceiling[FullSimplify[ProductLog[Log[10]/10^(1/9) (n - 1/9)] / Log[10] + 1/9]]; champerDigit[n_] := Mod[Floor[10^(Mod[n + (10^intermediate[n] - 10)/9, intermediate[n]] - intermediate[n] + 1) Ceiling[(9n + 10^intermediate[n] - 1)/(9intermediate[n]) - 1]], 10]; (* David W. Cantrell, Feb 18 2007 *)
%t A033307 First[RealDigits[ChampernowneNumber[], 10, 100]] (* _Paolo Xausa_, May 02 2024 *)
%o A033307 (PARI) { default(realprecision, 20080); x=0; y=1; d=10.0; e=1.0; n=0; while (y!=x, y=x; n++; if (n==d, d=d*10); e=e*d; x=x+n/e; ); d=0; for (n=0, 20000, x=(x-d)*10; d=floor(x); write("b033307.txt", n, " ", d)); } \\ _Harry J. Smith_, Apr 20 2009
%o A033307 (Haskell)
%o A033307 a033307 n = a033307_list !! n
%o A033307 a033307_list = concatMap (map (read . return) . show) [1..] :: [Int]
%o A033307 -- _Reinhard Zumkeller_, Aug 27 2013, Mar 28 2011
%o A033307 (Magma) &cat[Reverse(IntegerToSequence(n)):n in[1..50]]; // _Jason Kimberley_, Dec 07 2012
%o A033307 (Scala) val numerStr = (1 to 100).map(Integer.toString(_)).toList.reduce(_ + _)
%o A033307 numerStr.split("").map(Integer.parseInt(_)).toList // _Alonso del Arte_, Nov 04 2019
%o A033307 (Python)
%o A033307 from itertools import count
%o A033307 def agen():
%o A033307     for k in count(1): yield from list(map(int, str(k)))
%o A033307 a = agen()
%o A033307 print([next(a) for i in range(104)]) # _Michael S. Branicky_, Sep 13 2021
%Y A033307 See A030167 for the continued fraction expansion of this number.
%Y A033307 A007376 is the same sequence but with a different interpretation.
%Y A033307 Cf. A007908, A000027, A001191 (concatenate squares).
%Y A033307 Tables in which the n-th row lists the base b digits of n: A030190 and A030302 (b = 2), A003137 and A054635 (b = 3), A030373 (b = 4), A031219 (b = 5), A030548 (b = 6), A030998 (b = 7), A031035 and A054634 (b = 8), A031076 (b = 9), A007376 and this sequence (b = 10). - _Jason Kimberley_, Dec 06 2012
%Y A033307 Cf. A065648.
%Y A033307 Cf. A365237 (reciprocal).
%K A033307 nonn,base,cons,easy
%O A033307 0,2
%A A033307 _Eric W. Weisstein_