This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A033307 #162 May 27 2025 14:25:29 %S A033307 1,2,3,4,5,6,7,8,9,1,0,1,1,1,2,1,3,1,4,1,5,1,6,1,7,1,8,1,9,2,0,2,1,2, %T A033307 2,2,3,2,4,2,5,2,6,2,7,2,8,2,9,3,0,3,1,3,2,3,3,3,4,3,5,3,6,3,7,3,8,3, %U A033307 9,4,0,4,1,4,2,4,3,4,4,4,5,4,6,4,7,4,8,4,9,5,0,5,1,5,2,5,3,5,4,5,5,5,6,5 %N A033307 Decimal expansion of Champernowne constant (or Mahler's number), formed by concatenating the positive integers. %C A033307 This number is known to be normal in base 10. %C A033307 Named after David Gawen Champernowne (July 9, 1912 - August 19, 2000). - _Robert G. Wilson v_, Jun 29 2014 %D A033307 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.9, p. 442. %D A033307 G. Harman, One hundred years of normal numbers, in M. A. Bennett et al., eds., Number Theory for the Millennium, II (Urbana, IL, 2000), 149-166, A K Peters, Natick, MA, 2002. %D A033307 C. A. Pickover, The Math Book, Sterling, NY, 2009; see p. 364. %D A033307 H. M. Stark, An Introduction to Number Theory. Markham, Chicago, 1970, p. 172. %H A033307 Harry J. Smith, <a href="/A033307/b033307.txt">Table of n, a(n) for n = 0..20000</a> %H A033307 D. H. Bailey and R. E. Crandall, <a href="http://www.emis.de/journals/EM/expmath/volumes/11/11.4/pp527_546.pdf">Random Generators and Normal Numbers</a>, Exper. Math. 11, 527-546, 2002. %H A033307 Maya Bar-Hillel and Willem A. Wagenaar, <a href="https://doi.org/10.1016/0196-8858(91)90029-I">The perception of randomness</a>, Advances in applied mathematics 12.4 (1991): 428-454. See page 428. %H A033307 Edward B. Burger, <a href="https://web.archive.org/web/20240529063505/http://www.maa.org/sites/default/files/pdf/upload_library/22/Chauvenet/Burger.pdf">Diophantine Olympics and World Champions: Polynomials and Primes Down Under</a>, Amer. Math. Monthly, 107 (Nov. 2000), 822-829. %H A033307 Chess Programming Wiki, <a href="https://www.chessprogramming.org/David_Champernowne">David Champernowne</a> (as of Dec. 2019). %H A033307 D. G. Champernowne, <a href="https://doi.org/10.1112/jlms/s1-8.4.254">The Construction of Decimals Normal in the Scale of Ten</a>, J. London Math. Soc., 8 (1933), 254-260. %H A033307 Arthur H. Copeland and Paul Erdős, <a href="http://dx.doi.org/10.1090/S0002-9904-1946-08657-7">Note on Normal Numbers</a>, Bull. Amer. Math. Soc. 52, 857-860, 1946. %H A033307 Peyman Nasehpour, <a href="https://arxiv.org/abs/1806.07560">A Simple Criterion for Irrationality of Some Real Numbers</a>, arXiv:1806.07560 [math.AC], 2018. %H A033307 Simon Plouffe, <a href="http://www.worldwideschool.org/library/books/sci/math/MiscellaneousMathematicalConstants/chap12.html">Champernowne constant, the natural integers concatenated</a>. %H A033307 Simon Plouffe, <a href="http://www.plouffe.fr/simon/constants/champernowne.txt">Champernowne constant, the natural integers concatenated</a>. %H A033307 Simon Plouffe, <a href="http://www.plouffe.fr/simon/gendev/123456.html">Generalized expansion of real constants</a>. %H A033307 Paul Pollack and Joseph Vandehey, <a href="http://arxiv.org/abs/1405.6266">Besicovitch, Bisection, and the normality of 0.(1)(4)(9)(16)(25)...</a>, arXiv:1405.6266 [math.NT], 2014. %H A033307 Paul Pollack and Joseph Vandehey, <a href="http://www.jstor.org/stable/10.4169/amer.math.monthly.122.8.757">Besicovitch, Bisection, and the Normality of 0.(1)(4)(9)(16)(25)...</a>, The American Mathematical Monthly 122.8 (2015): 757-765. %H A033307 John K. Sikora, <a href="http://arxiv.org/abs/1210.1263">On the High Water Mark Convergents of Champernowne's Constant in Base Ten</a>, arXiv:1210.1263 [math.NT], 2012. %H A033307 John K. Sikora, <a href="http://arxiv.org/abs/1408.0261">Analysis of the High Water Mark Convergents of Champernowne's Constant in Various Bases</a>, arXiv:1408.0261 [math.NT], 2014. %H A033307 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ChampernowneConstant.html">Champernowne constant</a>. %H A033307 Wikipedia, <a href="https://en.wikipedia.org/wiki/Champernowne_constant">Champernowne constant</a>. %H A033307 Hector Zenil, N. Kiani and J. Tegner, <a href="https://arxiv.org/abs/1608.05972">Low Algorithmic Complexity Entropy-deceiving Graphs</a>, arXiv preprint arXiv:1608.05972 [cs.IT], 2016. %H A033307 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %F A033307 Let "index" i = ceiling( W(log(10)/10^(1/9) (n - 1/9))/log(10) + 1/9 ) where W denotes the principal branch of the Lambert W function. Then a(n) = (10^((n + (10^i - 10)/9) mod i - i + 1) * ceiling((9n + 10^i - 1)/(9i) - 1)) mod 10. See also Mathematica code. - David W. Cantrell, Feb 18 2007 %e A033307 0.12345678910111213141516171819202122232425262728293031323334353637383940414243... %t A033307 Flatten[IntegerDigits/@Range[0, 57]] (* Or *) %t A033307 almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Array[ almostNatural[#, 10] &, 105] (* _Robert G. Wilson v_, Jul 23 2012 and modified Jul 04 2014 *) %t A033307 intermediate[n_] := Ceiling[FullSimplify[ProductLog[Log[10]/10^(1/9) (n - 1/9)] / Log[10] + 1/9]]; champerDigit[n_] := Mod[Floor[10^(Mod[n + (10^intermediate[n] - 10)/9, intermediate[n]] - intermediate[n] + 1) Ceiling[(9n + 10^intermediate[n] - 1)/(9intermediate[n]) - 1]], 10]; (* David W. Cantrell, Feb 18 2007 *) %t A033307 First[RealDigits[ChampernowneNumber[], 10, 100]] (* _Paolo Xausa_, May 02 2024 *) %o A033307 (PARI) { default(realprecision, 20080); x=0; y=1; d=10.0; e=1.0; n=0; while (y!=x, y=x; n++; if (n==d, d=d*10); e=e*d; x=x+n/e; ); d=0; for (n=0, 20000, x=(x-d)*10; d=floor(x); write("b033307.txt", n, " ", d)); } \\ _Harry J. Smith_, Apr 20 2009 %o A033307 (Haskell) %o A033307 a033307 n = a033307_list !! n %o A033307 a033307_list = concatMap (map (read . return) . show) [1..] :: [Int] %o A033307 -- _Reinhard Zumkeller_, Aug 27 2013, Mar 28 2011 %o A033307 (Magma) &cat[Reverse(IntegerToSequence(n)):n in[1..50]]; // _Jason Kimberley_, Dec 07 2012 %o A033307 (Scala) val numerStr = (1 to 100).map(Integer.toString(_)).toList.reduce(_ + _) %o A033307 numerStr.split("").map(Integer.parseInt(_)).toList // _Alonso del Arte_, Nov 04 2019 %o A033307 (Python) %o A033307 from itertools import count %o A033307 def agen(): %o A033307 for k in count(1): yield from list(map(int, str(k))) %o A033307 a = agen() %o A033307 print([next(a) for i in range(104)]) # _Michael S. Branicky_, Sep 13 2021 %Y A033307 See A030167 for the continued fraction expansion of this number. %Y A033307 A007376 is the same sequence but with a different interpretation. %Y A033307 Cf. A007908, A000027, A001191 (concatenate squares). %Y A033307 Tables in which the n-th row lists the base b digits of n: A030190 and A030302 (b = 2), A003137 and A054635 (b = 3), A030373 (b = 4), A031219 (b = 5), A030548 (b = 6), A030998 (b = 7), A031035 and A054634 (b = 8), A031076 (b = 9), A007376 and this sequence (b = 10). - _Jason Kimberley_, Dec 06 2012 %Y A033307 Cf. A065648. %Y A033307 Cf. A365237 (reciprocal). %K A033307 nonn,base,cons,easy %O A033307 0,2 %A A033307 _Eric W. Weisstein_