cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033316 Value of D for incrementally largest values of minimal x satisfying Pell equation x^2-Dy^2=1.

This page as a plain text file.
%I A033316 #18 Feb 16 2025 08:32:36
%S A033316 1,2,5,10,13,29,46,53,61,109,181,277,397,409,421,541,661,1021,1069,
%T A033316 1381,1549,1621,2389,3061,3469,4621,4789,4909,5581,6301,6829,8269,
%U A033316 8941,9949,12541,13381,16069,17341,24049,24229,25309,29269,30781,32341,36061
%N A033316 Value of D for incrementally largest values of minimal x satisfying Pell equation x^2-Dy^2=1.
%C A033316 Equally, value of D for incrementally largest values of minimal y satisfying Pell equation x^2-Dy^2=1.
%C A033316 Values of n where A002349 (or A002350) sets a new record.
%H A033316 Peter J. Taylor, <a href="/A033316/b033316.txt">Table of n, a(n) for n = 1..334</a> (terms 1..93 from Ray Chandler).
%H A033316 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PellEquation.html">Pell Equation.</a>
%t A033316 PellSolve[(m_Integer)?Positive] := Module[{cf, n, s}, cf = ContinuedFraction[ Sqrt[m]]; n = Length[ Last[cf]]; If[ OddQ[n], n = 2*n]; s = FromContinuedFraction[ ContinuedFraction[ Sqrt[m], n]]; {Numerator[s], Denominator[s]}]; f[n_] := If[ !IntegerQ[ Sqrt[n]], PellSolve[n][[1]], 1]; a = b = -1; t = {}; Do[b = f[n]; If[b > a, t = Append[t, n]; a = b], {n, 1, 40500}]; t
%Y A033316 Cf. A000037, A033313, A033314, A033315, A002349, A002350.
%K A033316 nonn
%O A033316 1,2
%A A033316 _Eric W. Weisstein_
%E A033316 More terms from _Robert G. Wilson v_, Apr 15 2003