This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A033430 #55 Jun 19 2025 23:41:01 %S A033430 0,4,32,108,256,500,864,1372,2048,2916,4000,5324,6912,8788,10976, %T A033430 13500,16384,19652,23328,27436,32000,37044,42592,48668,55296,62500, %U A033430 70304,78732,87808,97556,108000,119164,131072,143748,157216,171500,186624,202612,219488 %N A033430 a(n) = 4*n^3. %C A033430 2*a(n) = (2*n)^3 is a perfect cube. %C A033430 Number of edges of the product of two complete bipartite graphs, each of order 2n, K_n,n x K_n,n - _Roberto E. Martinez II_, Jan 07 2002 %C A033430 This sequence is related to A049451 by a(n) = n*A049451(n) + sum( A049451(i), i=0..n-1 ) for n>0. - _Bruno Berselli_, Dec 19 2013 %C A033430 For n>=3, also the detour index of the n-gear graph. - _Eric W. Weisstein_, Dec 20 2017 %C A033430 For n > 0, this sequence can be obtained by summing consecutive blocks of odd numbers where the n-th block contains the next 2n odd numbers. - _Marco Zárate_, Jun 15 2025 %H A033430 Vincenzo Librandi, <a href="/A033430/b033430.txt">Table of n, a(n) for n = 0..750</a> %H A033430 Frank Ellermann, <a href="/A001792/a001792.txt">Illustration of binomial transforms</a> %H A033430 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DetourIndex.html">Detour Index</a> %H A033430 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GearGraph.html">Gear Graph</a> %H A033430 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A033430 G.f. 4*x*(1+4*x+x^2)/ (x-1)^4. - _R. J. Mathar_, Feb 01 2011 %F A033430 From _Ilya Gutkovskiy_, May 25 2016: (Start) %F A033430 E.g.f.: 4*x*(1 + 3*x + x^2)*exp(x). %F A033430 Sum_{n>=1} 1/a(n) = zeta(3)/4. (End) %F A033430 Product_{n>=1} a(n)/A280089(n) = Pi. - _Daniel Suteu_, Dec 26 2016 %F A033430 From _Bruce J. Nicholson_, Dec 07 2019: (Start) %F A033430 a(n) = 24*A000292(n-1) + 4*n. %F A033430 a(n) = 2*A007588(n) + 2*n. (End) %F A033430 a(n) = Sum_{k=0..2*n-1} (2*n*(n-1)-2*k+1). - _Sean A. Irvine_, Jun 19 2025 %t A033430 4 Range[0, 40]^3 (* _Harvey P. Dale_, Sep 07 2016 *) %t A033430 LinearRecurrence[{4, -6, 4, -1}, {0, 4, 32, 108}, 40] (* _Harvey P. Dale_, Sep 07 2016 *) %t A033430 Table[4 n^3, {n, 0, 20}] (* _Eric W. Weisstein_, Dec 20 2017 *) %t A033430 CoefficientList[Series[(4 x (1 + 4 x + x^2))/(-1 + x)^4, {x, 0, 20}], x] (* _Eric W. Weisstein_, Dec 20 2017 *) %o A033430 (Magma) [4*n^3: n in [0..40]]; // _Vincenzo Librandi_, Apr 27 2011 %o A033430 (PARI) a(n)=4*n^3 \\ _Charles R Greathouse IV_, Oct 07 2015 %Y A033430 Cf. A000578, A049451. %Y A033430 Cf. A000292, A007588. %Y A033430 Cf. A001844. %K A033430 nonn,easy %O A033430 0,2 %A A033430 _Jeff Burch_