This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A033436 #66 Feb 16 2025 08:32:36 %S A033436 0,0,1,3,6,9,13,18,24,30,37,45,54,63,73,84,96,108,121,135,150,165,181, %T A033436 198,216,234,253,273,294,315,337,360,384,408,433,459,486,513,541,570, %U A033436 600,630,661,693,726,759,793,828 %N A033436 a(n) = ceiling( (3*n^2 - 4)/8 ). %C A033436 Number of edges in 4-partite Turan graph of order n. %C A033436 Apart from the initial term this equals the elliptic troublemaker sequence R_n(1,4) (also sequence R_n(3,4)) in the notation of Stange (see Table 1, p.16). For other elliptic troublemaker sequences R_n(a,b) see the cross references below. - _Peter Bala_, Aug 08 2013 %D A033436 R. L. Graham, Martin Grötschel, and László Lovász, Handbook of Combinatorics, Vol. 2, 1995, p. 1234. %H A033436 Ivan Panchenko, <a href="/A033436/b033436.txt">Table of n, a(n) for n = 0..10000</a> %H A033436 Kevin Beanland, Hung Viet Chu, and Carrie E. Finch-Smith, <a href="https://arxiv.org/abs/2112.14905">Generalized Schreier sets, linear recurrence relation, Turán graphs</a>, arXiv:2112.14905 [math.CO], 2021. %H A033436 Katherine E. Stange, <a href="https://arxiv.org/abs/1108.3051">Integral points on elliptic curves and explicit valuations of division polynomials</a>, arXiv:1108.3051 [math.NT], 2011-2014. %H A033436 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TuranGraph.html">Turán Graph</a>. %H A033436 Wikipedia, <a href="http://en.wikipedia.org/wiki/Tur%C3%A1n_graph">Turán graph</a>. %H A033436 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,1,-2,1). %F A033436 The second differences of the listed terms are periodic with period (1, 1, 1, 0) of length 4, showing that the terms satisfy the recurrence a(n) = 2a(n-1)-a(n-2)+a(n-4)-2a(n-5)+a(n-6). - _John W. Layman_, Jan 23 2001 %F A033436 a(n) = (1/16) {6n^2 - 5 + (-1)^n + 2(-1)^[n/2] - 2(-1)^[(n-1)/2] }. Therefore a(n) is asymptotic to 3/8*n^2. - _Ralf Stephan_, Jun 09 2005 %F A033436 O.g.f.: -x^2*(1+x+x^2)/((x+1)*(x^2+1)*(x-1)^3). - _R. J. Mathar_, Dec 05 2007 %F A033436 a(n) = Sum_{k=0..n} A166486(k)*(n-k). - _Reinhard Zumkeller_, Nov 30 2009 %F A033436 a(n) = floor(3*n^2/8). - _Peter Bala_, Aug 08 2013 %F A033436 a(n) = Sum_{i=1..n} floor(3*i/4). - _Wesley Ivan Hurt_, Sep 12 2017 %F A033436 Sum_{n>=2} 1/a(n) = Pi^2/36 + tan(Pi/(2*sqrt(3)))*Pi/(2*sqrt(3)) + 2/3. - _Amiram Eldar_, Sep 24 2022 %t A033436 LinearRecurrence[{2, -1, 0, 1, -2, 1}, {0, 0, 1, 3, 6, 9}, 48] (* _Jean-François Alcover_, Sep 21 2017 *) %o A033436 (PARI) a(n)=(3*n^2 +3)\8 \\ _Charles R Greathouse IV_, Sep 24 2015 %Y A033436 Cf. A002620 (= R_n(1,2)), A000212 (= R_n(1,3) = R_n(2,3)), A033437 (= R_n(1,5) = R_n(4,5)), A033438 (= R_n(1,6) = R_n(5,6)), A033439 (= R_n(1,7) = R_n(6,7)), A033440, A033441, A033442, A033443, A033444. %Y A033436 Cf. A007590 (= R_n(2,4)), A030511 (= R_n(2,6) = R_n(4,6)), A184535 (= R_n(2,5) = R_n(3,5)). %K A033436 nonn,easy %O A033436 0,4 %A A033436 _N. J. A. Sloane_