This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A033437 #60 Feb 16 2025 08:32:36 %S A033437 0,0,1,3,6,10,14,19,25,32,40,48,57,67,78,90,102,115,129,144,160,176, %T A033437 193,211,230,250,270,291,313,336,360,384,409,435,462,490,518,547,577, %U A033437 608,640,672,705,739,774,810,846,883,921,960,1000,1040,1081,1123,1166,1210,1254 %N A033437 Number of edges in 5-partite Turán graph of order n. %C A033437 Apart from the initial term this is the elliptic troublemaker sequence R_n(1,5) (also sequence R_n(4,5)) in the notation of Stange (see Table 1, p. 16). For other elliptic troublemaker sequences R_n(a,b) see the cross references below. - _Peter Bala_, Aug 12 2013 %D A033437 R. L. Graham et al., eds., Handbook of Combinatorics, Vol. 2, p. 1234. %H A033437 Michael De Vlieger, <a href="/A033437/b033437.txt">Table of n, a(n) for n = 0..10000</a> %H A033437 Kevin Beanland, Hung Viet Chu, and Carrie E. Finch-Smith, <a href="https://arxiv.org/abs/2112.14905">Generalized Schreier sets, linear recurrence relation, Turán graphs</a>, arXiv:2112.14905 [math.CO], 2021. %H A033437 K. E. Stange, <a href="https://arxiv.org/abs/1108.3051">Integral points on elliptic curves and explicit valuations of division polynomials</a> arXiv:1108.3051 [math.NT], 2011-2014. %H A033437 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TuranGraph.html">Turán Graph</a> %H A033437 Wikipedia, <a href="http://en.wikipedia.org/wiki/Tur%C3%A1n_graph">Turán graph</a> %H A033437 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,0,1,-2,1). %F A033437 G.f.: (x^5+x^4+x^3+x^2)/((1-x^5)*(1-x)^2). %F A033437 a(n) = Sum_{k=0..n} A011558(k)*(n-k). - _Reinhard Zumkeller_, Nov 30 2009 %F A033437 a(n) = floor( 2n^2/5 ). - _Wesley Ivan Hurt_, Jun 20 2013 %F A033437 a(n) = Sum_{i=1..n} floor(4*i/5). - _Wesley Ivan Hurt_, Sep 12 2017 %t A033437 Table[Floor[2n^2/5],{n,0,60}] %o A033437 (Magma) [2*n^2 div 5: n in [0..60]]; // _Vincenzo Librandi_, Apr 20 2015 %o A033437 (PARI) a(n)=2*n^2\5 \\ _Charles R Greathouse IV_, Apr 20 2015 %Y A033437 Cf. A002620, A000212, A033436, A033438, A033439, A033440, A033441, A033442, A033443, A033444. - _Reinhard Zumkeller_, Nov 30 2009 %Y A033437 Elliptic troublemaker sequences: A007590 (= R_n(2,4)), A030511 (= R_n(2,6) = R_n(4,6)), A184535 (= R_n(2,5) = R_n(3,5)). %Y A033437 Cf. A279169. %K A033437 nonn,easy %O A033437 0,4 %A A033437 _N. J. A. Sloane_