This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A033447 #48 Oct 30 2018 20:14:17 %S A033447 111497,258527,286777,318407,332767,341827,358447,439787,473887, %T A033447 480737,495377,634187,647417,658367,663857,703837,732497,816317, %U A033447 819787,827767,843067,862307,937777,970457,970537,1001267,1012147,1032727,1052707,1055827,1104307,1117877,1164817,1165837 %N A033447 Initial prime in set of 4 consecutive primes with common difference 12. %C A033447 From _Zak Seidov_, Sep 30 2014: (Start) %C A033447 All terms are == {7, 17} mod 30. There is no set of 5 consecutive primes in arithmetic progression with common difference 12 (because a(n)+48 is always divisible by 5). %C A033447 Minimal first difference a(n+1)-a(n) = 40, and this occurs first at a(709) = 26930767, a(11357) = 655389367 and a(23339) = 1510368877; all a(n) are == 7 mod 30. (End) %H A033447 Zak Seidov, <a href="/A033447/b033447.txt">Table of n, a(n) for n = 1..1000</a> %H A033447 <a href="/index/Pri#primes_AP">Index entries for sequences related to primes in arithmetic progressions</a> %t A033447 A033447 = Reap[For[p = 2, p < 1100000, p = NextPrime[p], p2 = NextPrime[p]; If[p2 - p == 12, p3 = NextPrime[p2]; If[p3 - p2 == 12, p4 = NextPrime[p3]; If[p4 - p3 == 12, Sow[p]]]]]][[2, 1]] (* _Jean-François Alcover_, Jun 28 2012 *) %t A033447 Transpose[Select[Partition[Prime[Range[160000]],4,1],Union[ Differences[#]] =={12}&]][[1]] (* _Harvey P. Dale_, Jun 17 2014 *) %o A033447 (PARI) A033447(n, p=2, show_all=1, g=12,c,o)={forprime(q=p+1,, if(p+g!=p=q, next, q!=o+2*g, c=2, c++>3, show_all&& print1(o-g", "); n--||break); o=q-g); o-g} \\ Can be used as next(p)=A033447(1, p+1) to get the next term, e.g.: %o A033447 p=0; A033447_vec=vector(30,i,p=A033447(1,p+1)) \\ _M. F. Hasler_, Oct 26 2018 %Y A033447 Analogous sequences (start of CPAP-4 with common difference in square brackets): A033451 [6], this sequence [12], A033448 [18], A052242 [24], A052243 [30], A058252 [36], A058323 [42], A067388 [48], A259224 [54], A210683 [60]. %Y A033447 Subsequence of A052188 and of A248085. - _Zak Seidov_, Jun 27 2015 %Y A033447 Also subsequence of A054800: start of a CPAP-4, any common difference. %K A033447 nonn %O A033447 1,1 %A A033447 _Jeff Burch_ %E A033447 More terms from _Labos Elemer_, Jan 31 2000 %E A033447 Definition clarified by _Harvey P. Dale_, Jun 17 2014