cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033518 Number of matchings in graph C_{6} X P_{n}.

This page as a plain text file.
%I A033518 #12 May 25 2017 14:41:56
%S A033518 1,18,1104,57536,3079253,164206124,8761336545,467431319920,
%T A033518 24938493433976,1330521524829842,70986162750517765,
%U A033518 3787263138969145376,202058564666736227181,10780255299668629970930,575149608382918617117024,30685458073339150537724112
%N A033518 Number of matchings in graph C_{6} X P_{n}.
%D A033518 Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research reports, No 12, 1996, Department of Mathematics, Umea University.
%H A033518 Alois P. Heinz, <a href="/A033518/b033518.txt">Table of n, a(n) for n = 0..500</a>
%H A033518 Per Hakan Lundow, <a href="http://www.theophys.kth.se/~phl/Text/1factors2.ps.gz">Enumeration of matchings in polygraphs</a>, 1998.
%F A033518 G.f.: (x^11 -3*x^10 -60*x^9 +252*x^8 +153*x^7 -1427*x^6 +771*x^5 +1007*x^4 -452*x^3 -84*x^2 +35*x -1) / ( -x^13 +5*x^12 +90*x^11 -424*x^10 -1420*x^9 +6022*x^8 +1276*x^7 -14388*x^6 +5806*x^5 +5076*x^4 -2616*x^3 +66*x^2 +53*x -1). - _Alois P. Heinz_, Dec 09 2013
%Y A033518 Row 6 of A287428.
%K A033518 nonn
%O A033518 0,2
%A A033518 _Per H. Lundow_