cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033552 Number of partitions into Catalan numbers.

This page as a plain text file.
%I A033552 #24 Apr 29 2024 04:46:44
%S A033552 1,1,2,2,3,4,5,6,7,8,10,11,13,14,17,19,22,24,27,30,34,37,41,44,49,53,
%T A033552 58,62,68,73,80,85,92,98,106,113,121,128,137,145,155,163,175,184,197,
%U A033552 207,220,232,246,259,274,287,304,318,336,351,371,388,409,427,449,469
%N A033552 Number of partitions into Catalan numbers.
%H A033552 Reinhard Zumkeller, <a href="/A033552/b033552.txt">Table of n, a(n) for n = 0..250</a>
%H A033552 Igor Pak, <a href="https://arxiv.org/abs/1803.06636">Complexity problems in enumerative combinatorics</a>, arXiv:1803.06636 [math.CO], 2018.
%F A033552 G.f.: Product_{n>=1} 1/(1 - x^(binomial(2*n, n)/(n+1))).
%F A033552 a(n) = f(n,1,1) with f(m,k,c) = if c > m then 0^m else f(m-c,k,c) + f(m,k+1,2*c*(2*k+1)/(k+2)). [_Reinhard Zumkeller_, Apr 09 2010]
%e A033552 n=4 has 3 partitions: 2+2, 2+1+1, 1+1+1+1.
%e A033552 n=5 has 4 partitions: 5, 2+2+1, 2+1+1+1, 1+1+1+1+1.
%Y A033552 Cf. A000108.
%Y A033552 Cf. A176137. [_Reinhard Zumkeller_, Apr 09 2010]
%K A033552 easy,nonn
%O A033552 0,3
%A A033552 _Marc LeBrun_