This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A033590 #13 Sep 08 2022 08:44:51 %S A033590 1,24,945,6160,21945,57456,124729,238680,417105,680680,1052961, %T A033590 1560384,2232265,3100800,4201065,5571016,7251489,9286200,11721745, %U A033590 14607600,17996121,21942544,26504985,31744440 %N A033590 a(n) = (2*n-1)*(3*n-1)*(4*n-1)*(5*n-1). %H A033590 G. C. Greubel, <a href="/A033590/b033590.txt">Table of n, a(n) for n = 0..1000</a> %H A033590 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). %F A033590 G.f.: (1 + 19*x + 835*x^2 + 1665*x^3 + 360*x^4)/(1-x)^5. - _R. J. Mathar_, Feb 06 2017 %F A033590 From _G. C. Greubel_, Mar 05 2020: (Start) %F A033590 a(n) = n^4 * Pochhammer(2 - 1/n, 4) = Product_{j=2..5} (j*n-1). %F A033590 E.g.f.: (1 + 23*x + 449*x^2 + 566*x^3 + 120*x^4)*exp(x). (End) %p A033590 seq( mul(j*n-1, j=2..5), n=0..40); # _G. C. Greubel_, Mar 05 2020 %t A033590 Table[(2*n-1)*(3*n-1)*(4*n-1)*(5*n-1), {n,0,40}] (* _G. C. Greubel_, Mar 05 2020 *) %o A033590 (PARI) vector(41, n, my(m=n-1); prod(j=2,5, j*m-1) ) \\ _G. C. Greubel_, Mar 05 2020 %o A033590 (Magma) [(2*n-1)*(3*n-1)*(4*n-1)*(5*n-1): n in [0..40]]; // _G. C. Greubel_, Mar 05 2020 %o A033590 (Sage) [product(j*n-1 for j in (2..5)) for n in (0..40)] # _G. C. Greubel_, Mar 05 2020 %Y A033590 Cf. A060747, A033568, A033589. %K A033590 nonn,easy %O A033590 0,2 %A A033590 _N. J. A. Sloane_