A033637 Products of partition numbers A000041(n).
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 27, 28, 30, 32, 33, 35, 36, 40, 42, 44, 45, 48, 49, 50, 54, 55, 56, 60, 63, 64, 66, 70, 72, 75, 77, 80, 81, 84, 88, 90, 96, 98, 99, 100, 101, 105, 108, 110, 112, 120, 121, 125, 126, 128, 132, 135, 140
Offset: 1
Links
- David W. Wilson, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A046064.
Programs
-
Maple
with(combinat): A000041:=proc(n) options remember: RETURN(numbpart(n)): end: partdiv:=proc(m,i) local j,q,f: f:=0: for j from i by -1 to 2 while(f=0) do if(irem(m, A000041(j))=0) then q:=iquo(m, A000041(j)): if(q=1) then RETURN(1) else f:=partdiv(q,j) fi fi od: RETURN(f): end: for i from 2 to 15 do for n from A000041(i) to A000041(i+1)-1 do m:=partdiv(n,i): if m=1 then printf("%d, ",n) fi od od: # C. Ronaldo
-
Mathematica
p0 = Table[ PartitionsP[n], {n, 1, 40 (* ~ 1148 terms *)}] ; f[p_] := Select[ Outer[Times, p, p] // Flatten // Union, # <= Last[p0] &]; FixedPoint[f, p0] (* Jean-François Alcover, Oct 03 2013 *)
-
PARI
is(n,mx=n)=if(n>>valuation(n,2)==1,return(1));for(i=3,n, my(p=numbpart(i),m=n); while(m%p==0, if(is(m/=p),return(1))); if(p>n, return(0))) \\ Charles R Greathouse IV, Jun 28 2013
Extensions
More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 02 2005
Comments