cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033637 Products of partition numbers A000041(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 27, 28, 30, 32, 33, 35, 36, 40, 42, 44, 45, 48, 49, 50, 54, 55, 56, 60, 63, 64, 66, 70, 72, 75, 77, 80, 81, 84, 88, 90, 96, 98, 99, 100, 101, 105, 108, 110, 112, 120, 121, 125, 126, 128, 132, 135, 140
Offset: 1

Views

Author

Keywords

Comments

Range of A000688.

Crossrefs

Cf. A046064.

Programs

  • Maple
    with(combinat): A000041:=proc(n) options remember: RETURN(numbpart(n)): end: partdiv:=proc(m,i) local j,q,f: f:=0: for j from i by -1 to 2 while(f=0) do if(irem(m, A000041(j))=0) then q:=iquo(m, A000041(j)): if(q=1) then RETURN(1) else f:=partdiv(q,j) fi fi od: RETURN(f): end: for i from 2 to 15 do for n from A000041(i) to A000041(i+1)-1 do m:=partdiv(n,i): if m=1 then printf("%d, ",n) fi od od: # C. Ronaldo
  • Mathematica
    p0 = Table[ PartitionsP[n], {n, 1, 40 (* ~ 1148 terms *)}] ; f[p_] := Select[ Outer[Times, p, p] // Flatten // Union, # <= Last[p0] &]; FixedPoint[f, p0] (* Jean-François Alcover, Oct 03 2013 *)
  • PARI
    is(n,mx=n)=if(n>>valuation(n,2)==1,return(1));for(i=3,n, my(p=numbpart(i),m=n); while(m%p==0, if(is(m/=p),return(1))); if(p>n, return(0))) \\ Charles R Greathouse IV, Jun 28 2013

Extensions

More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 02 2005