This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A033683 #44 Jan 14 2024 03:11:57 %S A033683 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0, %T A033683 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, %U A033683 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 %N A033683 a(n) = 1 if n is an odd square not divisible by 3, otherwise 0. %D A033683 J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 105, Eq. (41). %H A033683 Antti Karttunen, <a href="/A033683/b033683.txt">Table of n, a(n) for n = 0..65537</a> %H A033683 <a href="/index/Ch#char_fns">Index entries for characteristic functions</a>. %F A033683 Essentially the series psi_6(z)=(1/2)(theta_2(z/9)-theta_2(z)). %F A033683 a(A104777(n)) = 1. %F A033683 A080995(n) = a(24n+1). %F A033683 Multiplicative with a(p^e) = 1 if 2 divides e and p > 3, 0 otherwise. - _Mitch Harris_, Jun 09 2005 %F A033683 Euler transform of a period 144 sequence. - _Michael Somos_, Jan 26 2008 %F A033683 a(n) = A033684(n) * A000035(n). %F A033683 Dirichlet g.f.: zeta(2*s) *(1-2^(-2s)) *(1-3^(-2s)). - _R. J. Mathar_, Mar 10 2011 %F A033683 G.f.: Sum_{k in Z} x^(6*k+1)^2. - _Michael Somos_, Dec 07 2019 %F A033683 Sum_{k=1..n} a(k) ~ sqrt(n)/3. - _Amiram Eldar_, Jan 14 2024 %e A033683 G.f. = x + x^25 + x^49 + x^121 + x^169 + x^289 + x^361 + x^529 + x^625 + ... %t A033683 a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, x^4] - EllipticTheta[ 2, 0, x^36])/2, {x, 0, n}] // PowerExpand; (* _Michael Somos_, Dec 07 2019 *) %t A033683 Table[If[OddQ[n]&&IntegerQ[Sqrt[n]]&&Mod[n,3]!=0,1,0],{n,0,120}] (* _Harvey P. Dale_, Sep 06 2020 *) %o A033683 (PARI) {a(n) = if( n%24 == 1, issquare(n), 0)}; /* _Michael Somos_, Jan 26 2008 */ %o A033683 (Haskell) %o A033683 a033683 n = fromEnum $ odd n && mod n 3 > 0 && a010052 n == 1 %o A033683 -- _Reinhard Zumkeller_, Nov 14 2015 %o A033683 (Magma) Basis( ModularForms( Gamma0(144), 1/2), 106)[2]; /* _Michael Somos_, Dec 07 2019 */ %Y A033683 Cf. A098108, A033684. %Y A033683 Cf. A010052, A010872, A104777. %K A033683 nonn,mult,easy %O A033683 0,1 %A A033683 _N. J. A. Sloane_