cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033689 Number of extreme quadratic forms or lattices in dimension n.

This page as a plain text file.
%I A033689 #35 May 14 2024 07:23:00
%S A033689 1,1,1,2,3,6,30,2408
%N A033689 Number of extreme quadratic forms or lattices in dimension n.
%C A033689 A lattice is extreme if and only if it is perfect and eutactic. - _Andrey Zabolotskiy_, Feb 20 2021
%D A033689 J. H. Conway and N. J. A. Sloane, Low-dimensional lattices III: perfect forms, Proc. Royal Soc. London, A 418 (1988), 43-80.
%D A033689 M. Dutour Sikiric, A. Schuermann and F. Vallentin, Classification of eight-dimensional perfect forms, Preprint, 2006.
%D A033689 P. M. Gruber, Convex and Discrete Geometry, Springer, 2007; p. 439
%D A033689 D.-O. Jaquet, Classification des réseaux dans R^7 (via la notion de formes parfaites), Journées Arithmétiques, 1989 (Luminy, 1989). Asterisque No. 198-200 (1991), 7-8, 177-185 (1992).
%D A033689 J. Martinet, Les réseaux parfaits des espaces Euclidiens, Masson, Paris, 1996, p. 175.
%D A033689 J. Martinet, Perfect Lattices in Euclidean Spaces, Springer-Verlag, NY, 2003.
%D A033689 G. Nebe, Review of J. Martinet, Perfect Lattices in Euclidean Spaces, Bull. Amer. Math. Soc., 41 (No. 4, 2004), 529-533.
%D A033689 A. Schuermann, Enumerating perfect forms, Contemporary Math., 493 (2009), 359-377. [From _N. J. A. Sloane_, Jan 21 2010]
%H A033689 J. H. Conway and N. J. A. Sloane, <a href="http://neilsloane.com/doc/splag.html">Sphere Packings, Lattices and Groups</a>, Springer-Verlag, 3rd edition, 1999, see Preface to 3rd Ed., especially the page that was omitted by the publisher between pages xx and xxi!
%H A033689 D.-O. Jaquet and F. Sigrist, <a href="https://gallica.bnf.fr/ark:/12148/bpt6k56752189/f647.item">Formes quadratiques contigües à D_7</a>, C. R. Acad. Sci. Paris Ser. I Math. 309 (1989), no. 10, 641-644.
%H A033689 J. Martinet and B. Venkov, <a href="https://jamartin.perso.math.cnrs.fr/Publications/fOrteutensmath.pdf">Les réseaux fortement eutactiques</a>, pp. 112-132 in Réseaux Euclidiens, Designs Sphériques et Formes Modulaires, ed. J. Martinet, L'Enseignement Mathématique, Geneva, 2001.
%H A033689 C. Riener, <a href="http://www.numdam.org/item/JTNB_2006__18_3_677_0/">On extreme forms in dimension 8</a>, J. Théor. Nombres Bordeaux 18 (2006), no. 3, 677-682.
%H A033689 B. Venkov, <a href="https://jamartin.perso.math.cnrs.fr/Publications/venkovensmath.pdf">Réseaux et designs sphériques</a>, pp. 10-86 in Réseaux Euclidiens, Designs Sphériques et Formes Modulaires, ed. J. Martinet, L'Enseignement Mathématique, Geneva, 2001.
%Y A033689 Cf. A004026 (perfect), A037075 (eutactic).
%K A033689 nonn,nice,hard,more
%O A033689 1,4
%A A033689 _N. J. A. Sloane_
%E A033689 a(8) = 2408 was calculated by G. Nebe's student Cordian Riener - communicated by G. Nebe, Oct 11 2005. He found this number by checking the complete list of 10916 perfect lattices in 8 dimensions (see A004026).