A033691 Minimal number of vertices in 1-1 deficient regular graph where minimal degree is 1 and maximal degree is n.
4, 8, 12, 20, 24, 32, 40, 52, 60, 72, 84, 100, 112, 128, 144, 164, 180, 200, 220, 244, 264, 288, 312, 340, 364, 392, 420, 452, 480, 512, 544, 580, 612, 648, 684, 724, 760, 800, 840, 884, 924, 968, 1012, 1060, 1104, 1152, 1200, 1252, 1300, 1352, 1404, 1460
Offset: 2
Links
- Vincenzo Librandi, Table of n, a(n) for n = 2..1000
Programs
-
Mathematica
a[n_?EvenQ] := n*(n+2)/2; a[n_ /; Mod[n, 4] == 3] := (n+1)^2/2; a[n_ /; Mod[n, 4] == 1] := (n^2 + 2*n + 5)/2; Table[a[n], {n, 2, 53}] (* Jean-François Alcover, Oct 10 2011 *)
Formula
a(2*i) = 2*i*(i+1) i=1, 2, 3, ...; a(4*i+3) = 2*(i+1)*(4*i+4) i=0, 1, 2, ...; a(4*i+5) = 4*(2*i^2+6*i+5) i=1, 2, 3, ...
Empirical G.f.: -4*x^2*(x^5-2*x^4+x^3+1) / ((x-1)^3*(x+1)*(x^2+1)). [Colin Barker, Jan 15 2013]
Extensions
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 23 2003
Comments