This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A033713 #30 Jan 08 2025 09:54:03 %S A033713 0,9,189,2889,38889,488889,5888889,68888889,788888889,8888888889, %T A033713 98888888889,1088888888889,11888888888889,128888888888889, %U A033713 1388888888888889,14888888888888889,158888888888888889,1688888888888888889,17888888888888888889,188888888888888888889,1988888888888888888889 %N A033713 Number of zeros in numbers 1 to 999..9 (n digits). %C A033713 Also the first n places of 1, ..., n-digit numbers in the almost-natural numbers (A007376). - _Erich Friedman_. %C A033713 a(n+1) is also the total number of digits in numbers from 1 through 999..9 (n digits). - _Jianing Song_, Apr 17 2022 %D A033713 M. Kraitchik, Mathematical Recreations. Dover, NY, 2nd ed., 1953, p. 49. %H A033713 F. Calogero, <a href="https://doi.org/10.1007/BF02984865">Cool irrational numbers and their rather cool rational approximations</a>, Math. Intell. 25 (4), 72-76 (2003). %H A033713 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (21,-120,100). %F A033713 From _Stephen G Penrice_, Oct 01 2000: (Start) %F A033713 a(n) = (1/9)*((n-1)*(10^n)-n*10^(n-1)+1). %F A033713 G.f.: (9*x^2)/((1-x)(1-10x)^2). (End) %F A033713 a(n) = Sum_{i=1..n} 9*i*10^(i-1). %F A033713 a(1)=0, a(2)=9, a(3)=189, a(n)=21*a(n-1)-120*a(n-2)+100*a(n-3). - _Harvey P. Dale_, Jan 24 2012 %F A033713 a(n+1) = A058183(10^n-1) for n >= 1. - _Jianing Song_, Apr 17 2022 %F A033713 E.g.f.: exp(x)*(1 + exp(9*x)*(9*x - 1))/9. - _Stefano Spezia_, Sep 13 2023 %t A033713 Table[ Sum[9i*10^(i - 1), {i, 1, n}], {n, 0, 16}] %t A033713 LinearRecurrence[{21,-120,100},{0,9,189},30] (* _Harvey P. Dale_, Jan 24 2012 *) %o A033713 (PARI) a(n)=((n-1)*(10^n)-n*10^(n-1)+1)/9 \\ _Charles R Greathouse IV_, Feb 19 2017 %Y A033713 Cf. A033714, A058183. %K A033713 nonn,base,nice,easy %O A033713 1,2 %A A033713 Olivier Gorin (gorin(AT)roazhon.inra.fr) %E A033713 More terms from _Erich Friedman_. %E A033713 a(18)-a(21) from _Stefano Spezia_, Sep 13 2023