cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033820 Triangle read by rows: T(k,j) = ((2*j+1)/(k+1))*binomial(2*j,j)*binomial(2*k-2*j,k-j).

This page as a plain text file.
%I A033820 #26 May 21 2015 09:24:20
%S A033820 1,1,3,2,4,10,5,9,15,35,14,24,36,56,126,42,70,100,140,210,462,132,216,
%T A033820 300,400,540,792,1716,429,693,945,1225,1575,2079,3003,6435,1430,2288,
%U A033820 3080,3920,4900,6160,8008,11440,24310,4862,7722,10296,12936,15876,19404
%N A033820 Triangle read by rows: T(k,j) = ((2*j+1)/(k+1))*binomial(2*j,j)*binomial(2*k-2*j,k-j).
%C A033820 f(n,k) = 2^{n-2(k-2)}sum(T(k-2,j)*binomial(n+2*(k-2-j),2*(k-2-j)),j=0..k-2) is the number of length n k-ary strings (k >= 2) which avoid a rising triple (pattern 123) or any other given 3-letter permutation pattern.
%C A033820 Row sums are the powers of 4. This is explained by a simple statistic on the 4^n lattice paths of length 2n formed from upsteps U=(1,1) and downsteps D=(1,-1). For such a path, define X = number of upsteps that lie above ground level (GL), the horizontal line through the initial vertex, and before the last vertex at GL. For UDDUUUUDDU for instance, the last vertex at GL follows the fourth step, and so X = 1. T(n,k) is the number of these paths with X=n-k. For example, T(2,1)=4 counts UDUU, UDDU, UDDD, DUUD because each has n-k=1 upsteps above GL and before the last vertex at GL. - _David Callan_, Nov 21 2011
%H A033820 Alexander Burstein, <a href="http://www.alexanderburstein.org/tiki-download_file.php?fileId=3">Enumeration of words with forbidden patterns</a>, Ph.D. thesis, University of Pennsylvania, 1998.
%H A033820 Ira Gessel, <a href="http://www.sciencedirect.com/science/article/pii/0747717192900342">Super ballot numbers</a>, J. Symbolic Computation 14 (1992), 179-194.
%H A033820 Walter Shur, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL6/Shur/shur51.html">Two Game-Set Inequalities</a>, J. Integer Seqs., Vol. 6, 2003.
%F A033820 T(k,0) = binomial(2*k, k)/(k+1), the k-th Catalan number; T(k,k) = binomial(2*(k+1),k+1)/2, half the (k+1)-st central binomial coefficient sum of entries in row k (over j) = 2^{2*(k-1)}
%F A033820 T(k,j) = sum(C(k-i)D(i), i=0..j), C(i) = binomial(2*i,i)/(i+1), D(i) = binomial(2*i,i).
%F A033820 G.f.: 2/(1-4*x*y+sqrt((1-4*x)*(1-4*x*y))). - _Vladeta Jovovic_, Dec 14 2003
%e A033820 {1},
%e A033820 {1, 3},
%e A033820 {2, 4, 10},
%e A033820 {5, 9, 15, 35},
%e A033820 {14, 24, 36, 56, 126},
%e A033820 {42, 70, 100, 140, 210, 462},
%e A033820 {132, 216, 300, 400, 540, 792, 1716},
%e A033820 ...
%Y A033820 Cf. A000108, A000984, A000302.
%Y A033820 Essentially a reflected version of A078817.
%K A033820 nonn,tabl
%O A033820 0,3
%A A033820 _Alexander Burstein_
%E A033820 More terms from _Vladeta Jovovic_, Dec 10 2003