cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033842 Triangle of coefficients of certain polynomials (exponents in decreasing order).

This page as a plain text file.
%I A033842 #11 Aug 08 2017 23:36:16
%S A033842 1,1,1,3,3,1,16,16,6,1,125,125,50,10,1,1296,1296,540,120,15,1,16807,
%T A033842 16807,7203,1715,245,21,1,262144,262144,114688,28672,4480,448,28,1,
%U A033842 4782969,4782969,2125764,551124,91854,10206,756,36,1,100000000
%N A033842 Triangle of coefficients of certain polynomials (exponents in decreasing order).
%C A033842 See A049323.
%H A033842 W. Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/index.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
%H A033842 Thierry Lévy, The Number of Prefixes of Minimal Factorisations of a Cycle, The Electronic Journal of Combinatorics, 23(3) (2016), #P3.35
%F A033842 a(n, m) = binomial(n+1, m)*(n+1)^(n-m-1), n >= m >= 0 else 0.
%e A033842 {1}; {1,1}; {3,3,1}; {16,16,6,1}; {125,125,50,10,1}; .... E.g. third row {3,3,1} corresponds to polynomial p(2,x)= 3*x^2+3*x+1.
%Y A033842 a(n, 0)= A000272(n+1), n >= 0 (first column), a(n, 1)= A000272(n+1), n >= 1 (second column). p(k-1, -x)/(1-k*x)^k = (-1+1/(1-k*x)^k)/(x*k^2) is for k=1..5 G.f. for A000012, A001792, A036068, A036070, A036083, respectively.
%Y A033842 See also A049323.
%K A033842 easy,nonn,tabl
%O A033842 0,4
%A A033842 _Wolfdieter Lang_