cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033918 Triangular array in which n-th row consists of the numbers 1^1, 2^2, ... n^n.

This page as a plain text file.
%I A033918 #23 Feb 15 2022 12:56:27
%S A033918 1,1,4,1,4,27,1,4,27,256,1,4,27,256,3125,1,4,27,256,3125,46656,1,4,27,
%T A033918 256,3125,46656,823543,1,4,27,256,3125,46656,823543,16777216,1,4,27,
%U A033918 256,3125,46656,823543,16777216,387420489,1,4,27,256,3125,46656
%N A033918 Triangular array in which n-th row consists of the numbers 1^1, 2^2, ... n^n.
%C A033918 Sequence B is called a reluctant sequence of sequence A, if B is triangle array read by rows: row number k coincides with first k elements of the sequence A. Sequence A033918 is the reluctant sequence of A000312 (number of labeled mappings from n points to themselves, endofunctions): n^n. - _Boris Putievskiy_, Dec 14 2012
%H A033918 Timur I Khantimirov and Boris Putievskiy (first 51 from Timur I Khantimirov), <a href="/A033918/b033918.txt">Table of n, a(n) for n = 1..1000</a>
%H A033918 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations Integer Sequences And Pairing Functions</a>, arXiv:1212.2732 [math.CO], 2012.
%F A033918 a(n) = A000312(m), where m= n-t(t+1)/2, t=floor((-1+sqrt(8*n-7))/2) or a(n)=(n-t(t+1)/2)^(n-t(t+1)/2), where t=floor((-1+sqrt(8*n-7))/2). - _Boris Putievskiy_, Dec 14 2012
%e A033918 1;
%e A033918 1, 4;
%e A033918 1, 4, 27;
%e A033918 1, 4, 27, 256;
%e A033918 1, 4, 27, 256, 3125;
%e A033918 1, 4, 27, 256, 3125, 46656;
%e A033918 1, 4, 27, 256, 3125, 46656, 823543;
%e A033918 ...
%t A033918 Module[{nn=10,c},c=Table[n^n,{n,nn}];Flatten[Table[Take[c,i],{i,nn}]]] (* _Harvey P. Dale_, Nov 02 2014 *)
%o A033918 (Python)
%o A033918 t=int((math.sqrt(8*n-7) - 1)/ 2)
%o A033918 m=(n-t*(t+1)/2)**(n-t*(t+1)/2)
%Y A033918 Cf. A002260, A220415, A220416.
%K A033918 nonn,tabl,easy
%O A033918 1,3
%A A033918 Timur I Khantimirov (Tim(AT)sbbank.udm.ru)