This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A033922 #72 Aug 19 2025 09:18:07 %S A033922 1,1,1,2,1,2,2,3,2,3,3,4,3,4,4,5,1,2,2,3,2,3,3,4,3,4,4,5,4,5,5,6,2,3, %T A033922 3,4,3,4,4,5,4,5,5,6,5,6,6,7,3,4,4,5,4,5,5,6,5,6,6,7,6,7,7,8,2,3,3,4, %U A033922 3,4,4,5,4,5,5,6,5,6,6,7,3,4,4,5,4,5 %N A033922 Base-2 digital convolution sequence. %C A033922 Definition: a(0) = 1; for n > 0, let the base-2 representation of n be 2^k_1 + ... + 2^k_i, then a(n) = a(k_1) + ... + a(k_i). %C A033922 The sequence can be constructed as follows. Let r(n)=[x(1),x(2),...,x(2^n)] denote a run of 2^n elements. Then r(n+1) is a run of length 2^(n+1) defined as the concatenation of r(n) and [x(1)+x(n), x(2)+x(n), ..., x(2^n)+x(n)]. Letting x(1)=0 and x(2)=1 we get r(1)=[0,1], r(2)=[0, 1, 1, 2], r(3)=[0, 1, 1, 2, 1, 2, 2, 3], r(4)=[0, 1, 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, 4, 5], etc. Replacing the leading zero by 1 in r(infinity) we get A033922. - _Benoit Cloitre_, Jan 10 2013 %C A033922 Number of 0's in Goodstein base-2 hereditary representation of n. For example, a(266)=5 once that 266 = 2^(2^(2^(2^0)+2^0)) + 2^(2^(2^0)+2^0) + 2^(2^0). - _Flávio V. Fernandes_, Jul 22 2025 %H A033922 Alois P. Heinz, <a href="/A033922/b033922.txt">Table of n, a(n) for n = 0..10000</a> %H A033922 Benoit Cloitre, <a href="/A033922/a033922.png">Plot of a(n) for n=1 up to 100000</a> %F A033922 From _Flávio V. Fernandes_, Jul 31 2025: (Start) %F A033922 a(n) = a(2^n). %F A033922 a(n) = Sum_{k=1..A000120(n)} a(A048793(n,k)-1) for n >= 1. (End) %e A033922 For example, 6 = 2^2 + 2^1, so a(6) = a(2) + a(1) = 2. %p A033922 a:= proc(n) option remember; local c, m, t; if n=0 then 1 else m:= n; c:=0; for t from 0 while m<>0 do c:= c+ `if`(irem(m, 2, 'm')=1, a(t), 0) od; c fi end: seq(a(n), n=0..120); # _Alois P. Heinz_, Jul 13 2011 %o A033922 (PARI) al(n)=local(v,k,e);v=vector(n+1);v[1]=1;for(m=1,n,k=m;e=0;while(k>0,if(k%2,v[m+1]+=v[e+1]);e++;k\=2));v /* _Benoit Cloitre_, Jan 10 2013 */ %o A033922 (PARI) /* to compute quickly 2^m terms of the sequence */ m=10;v=[0,1];for(n=2,m,v=concat(v,vector(2^n/2,i,v[i]+v[n])));a(n)=if(n<2,1,v[n]) /* _Benoit Cloitre_, Jan 16 2013 */ %Y A033922 Cf. A033639, A014221 (n such that a(n)=1), A206774 (first differences). %Y A033922 Cf. A048793, A133457; A348296; A000120. %K A033922 nonn,base %O A033922 0,4 %A A033922 _David W. Wilson_ %E A033922 Edited by _Franklin T. Adams-Watters_, Jul 13 2011