This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A033935 #44 Jul 02 2025 16:01:56 %S A033935 1,1,6,93,2716,127905,8848236,844691407,106391894904,17091486402849, %T A033935 3410496772665940,827540233598615691,239946160014513220896, %U A033935 81932406267721802925925,32541656017173091541743368,14874686717916861528415671285,7753005946480818323895940923376 %N A033935 Sum of squares of coefficients in full expansion of (z1+z2+...+zn)^n. %C A033935 Two samples of size n are taken from an urn containing infinitely many marbles of n distinct colors. a(n)/n^(2*n) is the probability that the two samples match. That is, they contain the same number of each color of marbles without regard to order. - _Geoffrey Critzer_, Apr 19 2014 %H A033935 Alois P. Heinz, <a href="/A033935/b033935.txt">Table of n, a(n) for n = 0..237</a> %F A033935 a(n) is coefficient of x^n in expansion of n!^2*(1 + x/1!^2 + x^2/2!^2 + x^3/3!^2 + ... + x^n/n!^2)^n. - _Vladeta Jovovic_, Jun 09 2000 %F A033935 a(n) ~ c * d^n * (n!)^2 / sqrt(n), where d = 2.1024237701057210364324371415246345951600138303179762223318873762632384990..., c = 0.487465475752598098146353111500372156824276600165331887960705498284416... - _Vaclav Kotesovec_, Jul 29 2014, updated Jul 10 2023 %F A033935 a(n) = n!^2 * [z^n] hypergeom([], [1], z)^n. - _Peter Luschny_, May 31 2017 %p A033935 b:= proc(n, i) option remember; `if`(n=0 or i=1, 1, %p A033935 add(b(n-j, i-1)*binomial(n, j)^2, j=0..n)) %p A033935 end: %p A033935 a:= n-> b(n$2): %p A033935 seq(a(n), n=0..20); # _Alois P. Heinz_, Jul 21 2014 %p A033935 A033935:= proc(n) series(hypergeom([],[1],z)^n, z=0, n+1): n!^2*coeff(%,z,n) end: seq(A033935(n), n=0..16); # _Peter Luschny_, May 31 2017 %t A033935 Table[nn=n;n!^2 Coefficient[Series[(Sum[x^k/k!^2,{k,0,nn}])^n,{x,0,nn}],x^n],{n,1,20}] (* _Geoffrey Critzer_, Apr 19 2014 *) %t A033935 Flatten[{1,Table[n!^2*Coefficient[Series[BesselI[0,2*Sqrt[x]]^n,{x,0,n}],x^n],{n,1,20}]}] (* _Vaclav Kotesovec_, Jul 29 2014 *) %t A033935 Table[SeriesCoefficient[HypergeometricPFQ[{},{1},x]^n, {x,0,n}] n!^2, {n,0,16}] (* _Peter Luschny_, May 31 2017 *) %Y A033935 Column k=2 of A245397. %Y A033935 Main diagonal of A287316. %Y A033935 Cf. A364116. %K A033935 nonn,easy %O A033935 0,3 %A A033935 _Warren D. Smith_, Dec 11 1999 %E A033935 More terms from _James Sellers_, Jun 01 2000 and _Vladeta Jovovic_, Jun 05 2000 %E A033935 a(0)=1 inserted by _Alois P. Heinz_, Jul 21 2014