A034030 Imprimitively represented by x^2+2y^2.
0, 4, 8, 9, 12, 16, 18, 24, 25, 27, 32, 36, 44, 48, 49, 50, 54, 64, 68, 72, 75, 76, 81, 88, 96, 98, 99, 100, 108, 121, 128, 132, 136, 144, 147, 150, 152, 153, 162, 164, 169, 171, 172, 176, 192, 196, 198, 200, 204, 216, 225, 228
Offset: 1
Keywords
Programs
-
Maple
# Maple code for A002479, A057127, A034030-A034034 from N. J. A. Sloane, Apr 30 2015 lis:={}; lisP:={}; lisI:={}; M:=50; M2:=M^2; for x from 0 to M do x2:=x^2; for y from 0 to M do N:=x2+2*y^2; if N <= M2 then if gcd(x,y) = 1 then lisP:={op(lisP),N}; else lisI:={op(lisI),N} fi; lis:={op(lis),N}; fi; od: od: lprint("lis"); Lis:=sort(convert(lis,list)); lprint("lisP"); LisP:=sort(convert(lisP,list)); lprint("lisI"); LisI:=sort(convert(lisI,list)); lprint("lisPnotI"); LisPnotI:=sort(convert(lisP minus lisI, list)); lprint("lisInotP"); LisInotP:=sort(convert(lisI minus lisP,list)); lprint("lisIandP"); LisIandP:=sort(convert(lisI intersect lisP,list)); lprint("liseither"); Liseither:=sort(convert(lis minus (lisI intersect lisP),list));
Extensions
Corrected by N. J. A. Sloane, Apr 30 2015