cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034089 Numbers that are proper divisors of the number you get by rotating digits right once.

This page as a plain text file.
%I A034089 #36 May 04 2025 17:35:00
%S A034089 102564,128205,142857,153846,179487,205128,230769,102564102564,
%T A034089 128205128205,142857142857,153846153846,179487179487,205128205128,
%U A034089 230769230769,1012658227848,1139240506329,102564102564102564
%N A034089 Numbers that are proper divisors of the number you get by rotating digits right once.
%C A034089 Let p(q) denote the period of the fraction q; then sequence is generated by p(i / (10k-1)), k=2,3,4,5,6,7,8,9; k <= i <= 9 and the concatenations of those periods, e.g., p(7/39)=a(5) p(2/19)=a(17).
%C A034089 Example if k=5: p((5+2)/49)=142857 which is in the sequence as the concatenations 142857142857, 142857142857142857, 142857142857142857142857, etc. - _Benoit Cloitre_, Feb 02 2002
%C A034089 The i in p(i / (10k-1)) is the last digit of the period, while k is equal to the ratio (right-rotated of p)/p. Thus no concatenation of any different such p's can be in the sequence. There are 8*9/2 = 36 terms which are not concatenation of previous terms, the last one being a(124) = 1525423728813559322033898305084745762711864406779661016949 with 58 digits. The term a(3)=p(7/49) is the only period of length (6) different from the length (42) of the other terms corresponding to the same value of k. - _M. F. Hasler_, Nov 18 2007
%C A034089 Numbers comprising multiple copies of a single digit, e.g., 111111, are not permitted. - _Harvey P. Dale_, Mar 08 2013
%C A034089 From _Emmanuel Vantieghem_, Oct 25 2015: (Start)
%C A034089 Subsequence of A245680.
%C A034089 Every element of the sequence is a multiple of 3.
%C A034089 The leading digit of every element is < 5.
%C A034089 (End)
%H A034089 M. F. Hasler, <a href="/A034089/b034089.txt">Table of n, a(n) for n = 1..124</a>
%o A034089 (PARI) period(p,q,S=[])=until(setsearch(S,p),S=setunion(S,[p]);p=10*p%q);S=[];until(p==S[1],S=concat(S,p);p=10*p%q);S*10\q /* print list of periods, right-rotated and ratio */ rotquo(n,d)={d=divrem(n,10);d[1]+=d[2]*10^#Str(d[1]);[n,d[1],d[1]/n]} for(k=2,9,for(i=k,9,print1( i/(10*k-1),"\t",rotquo(sum(j=1,#p=period(i,k*10-1),p[j]*10^(#p-j))))) /* build the sequence up to the greatest period */ A034089()={local(S=[],p); for(k=2,9,for(i=k,9,S=concat(S,sum(j=1,#p=period(i,k*10-1),p[j]*10^(#p-j))))); S=vecsort(S); for(i=1,#S, for(c=2,58\p=#Str(S[i]), S=concat(S,S[i]*(10^(c*p)-1)/(10^p-1)) )); vecsort(S)} \\ _M. F. Hasler_, Nov 18 2007
%Y A034089 Subsequences of this sequence (with quotient k): A146088 (k=2), A146561 (k=3), A146569 (k=4), A146754 (k=5), A291354 (k=6), A291215 (k=7), A291321 (k=8), A291353 (k=9).
%Y A034089 Cf. A092697, A097717.
%K A034089 easy,nice,nonn,base
%O A034089 1,1
%A A034089 _Erich Friedman_
%E A034089 Edited, corrected and extended by _M. F. Hasler_, Nov 18 2007