cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034096 Fractional part of square root of n starts with digit 0 (squares excluded).

This page as a plain text file.
%I A034096 #36 Sep 08 2022 16:49:43
%S A034096 26,37,50,65,82,101,102,122,123,145,146,170,171,197,198,226,227,228,
%T A034096 257,258,259,290,291,292,325,326,327,362,363,364,401,402,403,404,442,
%U A034096 443,444,445,485,486,487,488,530,531,532,533,577,578,579,580,626,627
%N A034096 Fractional part of square root of n starts with digit 0 (squares excluded).
%C A034096 Given n > 4, n^2 + 1 is in the sequence. In fact, as n gets larger, more and more numbers just above n^2 are also in the sequence. For a particular n, the integers between n^2 and (n + 1/10)^2 are in this sequence. - _Alonso del Arte_, Mar 16 2019
%H A034096 Nathaniel Johnston, <a href="/A034096/b034096.txt">Table of n, a(n) for n = 1..10000</a>
%F A034096 A023961(a(n)) = 0. - _Michel Marcus_, Sep 21 2015
%F A034096 a(n) = 10n + O(sqrt(n)). - _Charles R Greathouse IV_, Sep 08 2022
%e A034096 sqrt(145) = 12.041594578792295..., so 145 is in the sequence.
%e A034096 sqrt(146) = 12.083045973594572..., so 146 is also in the sequence.
%e A034096 sqrt(147) = 12.124355652982141..., so 147 is not in the sequence.
%p A034096 A034096 := proc(n) option remember: local k,rt: if(n=1)then return 26: else k:=procname(n-1)+1: do rt:=sqrt(k): if(not frac(rt)=0 and floor(10*rt) mod 10 = 0)then return k: fi: k:=k+1: od: fi: end: seq(A034096(n), n=1..50); # _Nathaniel Johnston_, May 04 2011
%p A034096 seq(seq(x, x=floor(n^2) +1 .. ceil((n+1/10)^2)-1),n=1..100); # _Robert Israel_, Sep 21 2015
%t A034096 zdQ[n_] := Module[{c = Sqrt[n], sr, i, l}, sr = RealDigits[c, 10, 5]; i = Last[sr] + 1; l = First[sr]; l[[i]] == 0 && !IntegerQ[c]]; Select[Range[700], zdQ] (* _Harvey P. Dale_, Oct 10 2011 *)
%t A034096 Flatten[Table[Range[n^2 + 1, Floor[(n + 1/10)^2]], {n, 25}]] (* _Alonso del Arte_, Mar 16 2019 *)
%o A034096 (PARI) isok(n) = !issquare(n) && !(floor(10*sqrt(n)) % 10); \\ _Michel Marcus_, Sep 21 2015
%o A034096 (PARI) is(n)=my(s=sqrtint(n),s2=s^2); s2+s\5 >= n && s2 < n \\ _Charles R Greathouse IV_, Sep 07 2022
%o A034096 (PARI) list(lim)=my(v=List(),s=sqrtint(lim\=1)); for(n=5,s-1, for(i=n^2+1,n^2+n\5, listput(v,i))); for(i=s^2+1,min(s^2+s\5,lim), listput(v,i)); Vec(v) \\ _Charles R Greathouse IV_, Sep 08 2022
%Y A034096 Cf. A023961, A034106.
%K A034096 nonn,easy,base
%O A034096 1,1
%A A034096 _Patrick De Geest_, Sep 15 1998
%E A034096 Name clarified by _Michel Marcus_, Sep 21 2015