This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A034115 #28 Aug 14 2021 15:31:51 %S A034115 35,48,63,80,99,119,142,167,194,223,253,286,321,358,397,437,480,525, %T A034115 572,621,671,724,779,836,895,955,1018,1083,1150,1219,1289,1362,1437, %U A034115 1514,1593,1673,1756,1841,1928,2017,2107,2200,2295,2392,2491,2591,2694 %N A034115 Fractional part of square root of a(n) starts with 9: first term of runs. %C A034115 How is this different from A034105? - _N. J. A. Sloane_, Mar 30 2007 %C A034115 Answer: A034115 has the starts of runs of consecutive values of A034105. That is, frac{sqrt[a(n)]} >= 0.9, but frac{sqrt[a(n)-1]} < 0.9. - _Don Reble_, Jul 17 2020 %H A034115 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,0,1,-2,1). %F A034115 a(n) = n^2 + 9*n + 25 + floor(4*n / 5) = A027690(n+4)+A090223(n). - _Don Reble_, Jul 17 2020 %e A034115 358, 359 and 360 are a run of 3 numbers in A034105, so 358 is in this sequence, but 359 and 360 are not. - _R. J. Mathar_, Jul 21 2020 %t A034115 Join[{35},Select[Partition[Select[Range[3000],NumberDigit[Sqrt[#],-1] == 9&],2,1],(#[[2]]-#[[1]]!=1&)][[All,2]]] (* or *) LinearRecurrence[{2,-1,0,0,1,-2,1},{35,48,63,80,99,119,142},50] (* _Harvey P. Dale_, Aug 14 2021 *) %Y A034115 Cf. A027690, A034105, A090223. %K A034115 nonn,base %O A034115 1,1 %A A034115 _Patrick De Geest_, Sep 15 1998