cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034169 Disjoint discriminants (one form per genus) of type 2.

This page as a plain text file.
%I A034169 #16 Aug 04 2020 05:13:58
%S A034169 1,3,5,11,15,21,29,35,39,51,65,95,105,165,231
%N A034169 Disjoint discriminants (one form per genus) of type 2.
%D A034169 J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 198.
%D A034169 J. M. Borwein and P. B. Borwein, Pi and the AGM, page 293.
%D A034169 L. E. Dickson, Introduction to the theory of numbers, Dover, NY, 1929.
%H A034169 J. Borwein and K.-K. S. Choi, <a href="https://projecteuclid.org/euclid.em/1046889597">On the representations of xy+yz+zx</a>, Experimental Mathematics, 9 (2000), 153-158.
%H A034169 Experimental Mathematics, <a href="http://www.emis.de/journals/EM/">Home Page</a>
%F A034169 a(n) = A034168(n) / 2. - _Sean A. Irvine_, Aug 03 2020
%Y A034169 Cf. A034168, A034170.
%K A034169 nonn,fini,full,nice
%O A034169 1,2
%A A034169 Jonathan Borwein (jborwein(AT)cecm.sfu.ca), choi(AT)cecm.sfu.ca (Stephen Choi)