cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034267 a(n) = f(n,n) where f is given in A034261.

Original entry on oeis.org

0, 1, 7, 39, 196, 930, 4257, 19019, 83512, 361998, 1553630, 6615686, 27992472, 117823940, 493768485, 2061580275, 8580127920, 35611376790, 147447066690, 609200868210, 2512267906200, 10342848445020, 42516521451690, 174535009040574, 715599131576976, 2930673247541900
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A034261.

Programs

  • Maple
    A034261 := proc(n, k) binomial(n+k, k+1)*(n*k+n+1)/(k+2); end;
    seq( A034261(n,n),n=0..40) ; # R. J. Mathar, Feb 10 2025
  • Mathematica
    a[n_] := Binomial[2*n, n+1]*(n^2 + n + 1)/(n + 2); Array[a, 25, 0] (* Amiram Eldar, Sep 04 2025 *)

Formula

Conjecture D-finite with recurrence -(n+2)*(11*n-7)*a(n) + 2*(23*n^2+44*n+30)*a(n-1) - 4*(n+5)*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Feb 10 2025
From Amiram Eldar, Sep 04 2025: (Start)
a(n) = binomial(2*n, n+1)*(n^2+n+1)/(n+2);
a(n) ~ 2^(2*n) * sqrt(n/Pi). (End)

Extensions

Corrected and extended by N. J. A. Sloane, Apr 21 2000