cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034275 a(n) = f(n,n-2) where f is given in A034261.

This page as a plain text file.
%I A034275 #32 Sep 04 2025 01:55:33
%S A034275 1,3,14,65,294,1302,5676,24453,104390,442442,1864356,7818538,32657884,
%T A034275 135950700,564306840,2336457645,9652643910,39800950530,163830074100,
%U A034275 673327275390,2763494696820,11327881630260,46381659765480,189711966348450,775232392541724,3165127107345252
%N A034275 a(n) = f(n,n-2) where f is given in A034261.
%C A034275 Divisible by the Catalan numbers, by the explicit formula. - _F. Chapoton_, Jun 24 2021
%F A034275 a(n) = binomial(2*n-2,n-1)/n * (n^2-n+1).
%F A034275 a(n) = binomial(2*n-2,n-1) + (n-1)*binomial(2*n-2,n).
%F A034275 D-finite with recurrence n*a(n) + 2*(-6*n+7)*a(n-1) + 4*(11*n-24)*a(n-2) + 24*(-2*n+7)*a(n-3) = 0. - _R. J. Mathar_, Feb 10 2025
%F A034275 a(n) ~ 2^(2*n-2) * sqrt(n/Pi). - _Amiram Eldar_, Sep 04 2025
%t A034275 a[n_] := Binomial[2*n-2,n-1] * (n^2-n+1) / n; Array[a, 25] (* _Amiram Eldar_, Sep 04 2025 *)
%o A034275 (Sage)
%o A034275 [binomial(2*n-2,n-1)//n * (n**2-n+1) for n in range(1,8)]
%o A034275 (PARI) a(n) = binomial(2*n-2,n-1)/n * (n^2-n+1); \\ _Michel Marcus_, Jun 24 2021
%Y A034275 Cf. A000108, A002061, A034261, A344191, A344228.
%K A034275 nonn,easy,changed
%O A034275 1,2
%A A034275 _Clark Kimberling_
%E A034275 Corrected and extended by _N. J. A. Sloane_, Apr 21 2000