cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034287 Numbers whose product of divisors is larger than that of any smaller number.

This page as a plain text file.
%I A034287 #29 Oct 07 2023 11:53:01
%S A034287 1,2,3,4,6,8,10,12,18,20,24,30,36,48,60,72,84,90,96,108,120,168,180,
%T A034287 240,336,360,420,480,504,540,600,630,660,672,720,840,1080,1260,1440,
%U A034287 1680,2160,2520,3360,3780,3960,4200,4320,4620,4680,5040,7560,9240
%N A034287 Numbers whose product of divisors is larger than that of any smaller number.
%C A034287 It appears that 2 and 3 are the only terms in this sequence that are not in A034288. - _T. D. Noe_, Mar 10 2007
%C A034287 Is this the same as A067128?
%C A034287 a(n) = numbers m where record values occur in A007955(m); A007955(m) = product of divisors of m. a(n) = possible values of A174901(m) in increasing order, a(n) = the smallest numbers k such that A007955(k) = A174899(n). - _Jaroslav Krizek_, Apr 01 2010
%C A034287 Equals A067128 for the 105834 terms less than 10^150.
%H A034287 Amiram Eldar, <a href="/A034287/b034287.txt">Table of n, a(n) for n = 1..230</a> (terms below 10^10, terms 1..161 from T. D. Noe)
%t A034287 divProd[n_] := Times @@ Divisors[n]; a[1] = 1; a[n_] := a[n] = Catch[For[dp = divProd[an = a[n - 1]]; an++, True, an++, If[divProd[an] > dp, Throw[an]]]]; Table[a[n], {n, 1, 52}] (* _Jean-François Alcover_, Feb 01 2013 *)
%t A034287 DeleteDuplicates[Table[{n,Times@@Divisors[n]},{n,10000}],GreaterEqual[#1[[2]],#2[[2]]]&] [[;;,1]] (* _Harvey P. Dale_, Oct 07 2023 *)
%o A034287 (PARI) A007955(n)=if(issquare(n, &n), n^numdiv(n^2), n^(numdiv(n)/2))
%o A034287 r=0;for(n=1,1e5,t=A007955(n);if(t>r,r=t;print1(n", "))) \\ _Charles R Greathouse IV_, Feb 01 2013
%Y A034287 Cf. A007955, A007956, A034288, A034090, A034091, A067128.
%K A034287 easy,nonn,nice
%O A034287 1,2
%A A034287 _Erich Friedman_
%E A034287 More terms from _David W. Wilson_, Dec 19 2001