This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A034297 #57 May 03 2020 06:03:28 %S A034297 1,1,2,4,6,11,17,29,47,78,130,215,357,595,990,1651,2748,4584,7643, %T A034297 12744,21256,35451,59133,98636,164531,274463,457837,763746,1274060, %U A034297 2125356,3545491,5914545,9866602,16459421,27457549,45804648,76411272,127469285,212644336 %N A034297 Number of ordered positive integer solutions (m_1, m_2, ..., m_k) (for some k) to Sum_{i=1..k} m_i=n with |m_i-m_{i-1}| <= 1 for i = 2 ... k. %C A034297 Compositions of n where successive parts differ by at most 1, see example. [_Joerg Arndt_, Dec 10 2012] %H A034297 Alois P. Heinz, <a href="/A034297/b034297.txt">Table of n, a(n) for n = 0..4500</a> %H A034297 Jia Huang, <a href="https://arxiv.org/abs/1812.11010">Compositions with restricted parts</a>, arXiv:1812.11010 [math.CO], 2018. %F A034297 a(n) ~ c * d^n, where d = 1.668202067018461116361070469945501401879811945303435230637248..., c = 0.762436680050402638439806786781869262562176911054246754543346... . - _Vaclav Kotesovec_, Sep 02 2014 %e A034297 From _Joerg Arndt_, Dec 10 2012: (Start) %e A034297 The a(6) = 17 such compositions of 6 are %e A034297 [ #] composition %e A034297 [ 1] [ 1 1 1 1 1 1 ] %e A034297 [ 2] [ 1 1 1 1 2 ] %e A034297 [ 3] [ 1 1 1 2 1 ] %e A034297 [ 4] [ 1 1 2 1 1 ] %e A034297 [ 5] [ 1 1 2 2 ] %e A034297 [ 6] [ 1 2 1 1 1 ] %e A034297 [ 7] [ 1 2 1 2 ] %e A034297 [ 8] [ 1 2 2 1 ] %e A034297 [ 9] [ 1 2 3 ] %e A034297 [10] [ 2 1 1 1 1 ] %e A034297 [11] [ 2 1 1 2 ] %e A034297 [12] [ 2 1 2 1 ] %e A034297 [13] [ 2 2 1 1 ] %e A034297 [14] [ 2 2 2 ] %e A034297 [15] [ 3 2 1 ] %e A034297 [16] [ 3 3 ] %e A034297 [17] [ 6 ] %e A034297 (End) %p A034297 b:= proc(n, i) option remember; %p A034297 `if`(n=i, 1, `if`(n<0 or i<1, 0, add(b(n-i, i+j), j=-1..1))) %p A034297 end: %p A034297 a:= n-> add(b(n, k), k=0..n): %p A034297 seq(a(n), n=0..50); # _Alois P. Heinz_, Jul 06 2012 %t A034297 b[n_, i_] := b[n, i] = If[n == i, 1, If[n<0 || i<1, 0, Sum[b[n-i, i+j], {j, -1, 1}] ]]; a[n_] := Sum[b[n, k], {k, 1, n}]; Array[a, 50] (* _Jean-François Alcover_, Mar 13 2015, after _Alois P. Heinz_ *) %o A034297 (PARI) %o A034297 N=70; nil=-1; %o A034297 T = matrix(N, N, i, j, nil); %o A034297 doIt(last, left) = my(c); c = T[last, left]; if (c == nil, c = 0; for (i = max(1, last - 1), last + 1, c += b(i, left - i)); T[last, left] = c); c; %o A034297 b(last, left) = if (left == 0, return(1)); if (left < 0, return(0)); doIt(last, left); %o A034297 a(n) = sum (i = 1, n, b(i, n - i)); %o A034297 vector(N,n,a(n)) \\ _David Wasserman_, Feb 02 2006 %o A034297 (Python) %o A034297 from sympy.core.cache import cacheit %o A034297 @cacheit %o A034297 def b(n, i): return 1 if n==i else 0 if n<0 or i<1 else sum(b(n - i, i + j) for j in range(-1, 2)) %o A034297 def a(n): return sum(b(n, k) for k in range(n + 1)) %o A034297 print([a(n) for n in range(51)]) # _Indranil Ghosh_, Aug 14 2017, after Maple code %Y A034297 Cf. A003116, A034296. %Y A034297 Column k=1 of A214246, A214248. %Y A034297 Row sums of A309939. %K A034297 nonn %O A034297 0,3 %A A034297 _Erich Friedman_ %E A034297 More terms from _David Wasserman_, Feb 02 2006 %E A034297 a(0)=1 prepended by _Alois P. Heinz_, Aug 14 2017